BSEB Bihar Board Class 10 Science Solutions Chapter 10 प्रकाश-परावर्तन तथा अपवर्तन
Bihar Board Class 10 Science Solutions Chapter 10 प्रकाश-परावर्तन तथा अपवर्तन Textbook Questions and Answers, Additional Important Questions, Notes.
Bihar Board Class 10 Science प्रकाश-परावर्तन तथा अपवर्तन InText Questions and Answers
अनुच्छेद 10.1 से 10.2.2 पर आधारित
प्रश्न 1.
अवतल दर्पण के मुख्य फोकस की परिभाषा लिखिए।
उत्तर:
अवतल दर्पण का मुख्य फोकस अवतल दर्पण के मुख्य अक्ष पर स्थित वह बिंदु जहाँ पर मुख्य अक्ष के समानांतर किरणें परिवर्तित होने के पश्चात् मिलती हैं; अवतल दर्पण का मुख्य फोकस कहलाता है।
प्रश्न 2.
एक गोलीय दर्पण की वक्रता त्रिज्या 20 cm है। इसकी फोकस दूरी क्या होगी? (2014, 16, 17, 18)
हल:
हम जानते हैं,
R =2f
f = \(\frac {R}{2}\)
दिया है,
R = \(\frac {20}{2}\)
f = 10 cm
अतः गोलीय दर्पण की फोकस दूरी 10 cm है।
प्रश्न 3.
उस दर्पण का नाम बताइए जो बिंब का सीधा तथा आवर्धित प्रतिबिंब बना सके।
उत्तर:
अवतल दर्पण बिंब का सीधा तथा आवर्धित प्रतिबिंब बनाता है।
प्रश्न 4.
हम वाहनों में उत्तल दर्पण को पश्च-दृश्य दर्पण के रूप में वरीयता क्यों देते हैं?
उत्तर:
हम वाहनों में उत्तल दर्पण को पश्च-दृश्य दर्पण के रूप में वरीयता देते हैं; क्योंकि यह वस्तुओं (दूर स्थित भी) का सीधा, पूर्ण तथा छोटा प्रतिबिंब बनाता है।
अनुच्छेद 10.2.3 और 10.2.4 पर आधारित
प्रश्न 1.
उस उत्तल दर्पण की फोकस दूरी ज्ञात कीजिए जिसकी वक्रता त्रिज्या 32 cm है।
हल:
हम जानते हैं,
R = 2f
∴ f = \(\frac {R}{2}\)
दिया है,
R = 32 cm
∴ f = \(\frac {32}{2}\)
∴ f = 16 cm
अत: उत्तल दर्पण की फोकस दूरी 16 cm है।
प्रश्न 2.
कोई अवतल दर्पण अपने सामने 10 cm दूरी पर रखे किसी बिंब का तीन गुना आवर्धित (बड़ा) वास्तविक प्रतिबिंब बनाता है। प्रतिबिंब दर्पण से कितनी दूरी पर है?
हल:
दिया है,
u = 10 cm तथा आवर्धान क्षमता m = 3
हम जानते हैं,
m = \(\frac {-υ}{u}\)
या 3u = υ
u = -30 cm
∴ प्रतिबिंब अवतल दर्पण के सामने ध्रुव से 30 cm की दूरी पर बनेगा।
अनुच्छेद 10.3, 10.3.1 और 10.3.2 पर आधारित
प्रश्न 1.
वायु में गमन करती प्रकाश की एक किरण जल में तिरछी प्रवेश करती है। क्या प्रकाश किरण अभिलंब की ओर झुकेगी अथवा अभिलंब से दूर हटेगी? बताइए क्यों ?
उत्तर:
यदि वायु में गमन करती प्रकाश की एक किरण जल में तिरछी प्रवेश करती है तो यह अभिलंब की ओर झुकेगी; क्योंकि जल में प्रवेश करने पर इसका वेग कम हो जाता है।
प्रश्न 2.
प्रकाश वायु से 1.50 अपवर्तनांक की काँच की प्लेट में प्रवेश करता है। काँच में प्रकाश की चाल कितनी है? निर्वात् में प्रकाश की चाल 3 x 10 m/s है।
हल:
दिया है, काँच का अपवर्तनांक ng = 1.50
सूत्र ng = \(\frac{c}{υ_{g}}\) से
प्रश्न 3.
सारणी 10.3 से अधिकतम प्रकाशिक घनत्व के माध्यम को ज्ञात कीजिए। न्यूनतम प्रकाशिक घनत्व के माध्यम को भी ज्ञात कीजिए।
उत्तर:
अधिकतम प्रकाशिक घनत्व का माध्यम हीरा जबकि न्यूनतम प्रकाशिक घनत्व का माध्यम वायु है।
प्रश्न 4.
आपको केरोसिन, तारपीन का तेल तथा जल दिए गए हैं। इनमें से किसमें प्रकाश सबसे अधिक तीव्र गति से चलता है? सारणी 10.3 में दिए गए आँकड़ों का उपयोग कीजिए।
उत्तर:
प्रकाश जल में सबसे अधिक तीव्र गति से चलेगा; क्योंकि इसका अपवर्तनांक केरोसिन तथा तारपीन के तेल से कम होता है।
प्रश्न 5.
हीरे का अपवर्तनांक 2.42 है। इस कथन का क्या अभिप्राय है?
उत्तर:
प्रश्न में उल्लिखित कथन का अभिप्राय यह है कि हीरे का प्रकाशिक घनत्व बहुत अधिक है जिसके कारण प्रकाश की चाल इसमें बहुत धीमी होगी। (निर्वात् में प्रकाश की चाल की 1 गुनी)
अनुच्छेद 10.3.3 से 10.3.8 पर आधारित
प्रश्न 1.
किसी लेंस की 1 डायॉप्टर क्षमता को परिभाषित कीजिए।
उत्तर:
जब किसी लेंस की फोकस दूरी 1 मीटर होती है तो उसकी क्षमता 1 डायॉप्टर होती है।
प्रश्न 2.
कोई उत्तल लेंस किसी सुई का वास्तविक तथा उलटा प्रतिबिंब उस लेंस से 50 cm दूर बनाता है। यह सुई, उत्तल लेंस के सामने कहाँ रखी है, यदि इसका प्रतिबिंब उसी साइज़ का बन रहा है जिस साइज़ का बिंब है। लेंस की क्षमता भी ज्ञात कीजिए।
हल:
दिया है, प्रतिबिंब की दूरी, υ = 50 cm
m = 1
p = \(\frac{1}{f}\) = ?
∴ m = \(\frac{υ}{u}\)
∴ 1 = \(\frac{υ}{u}\) ⇒ υ = u
∴ u = -50 cm
∴ वस्तु की दूरी = 50 cm
∴ \(\frac{1}{υ}\) – \(\frac{1}{u}\) = \(\frac{1}{f}\) = \(\frac{1}{50}\) – \(\frac{1}{50}\) = \(\frac{1}{f}\) = \(\frac{1+1}{50}\) = \(\frac{1}{f}\)
∴ f = 25cm
लेंस की क्षमता P = \(\frac{1}{25}\) x 100
∴ P = 4 डायॉप्टर
प्रश्न 3.
2 m फोकस दूरी वाले किसी अवतल लेंस की क्षमता ज्ञात कीजिए। (2018)
हल:
दिया है, फोकस दूरी, f = -2 m
अवतल लेंस की क्षमता, P = \(\frac{1}{f}\)
∴ p = – \(\frac{1}{2}\)
∴ P= – 0.5 डायॉप्टर
Bihar Board Class 10 Science प्रकाश-परावर्तन तथा अपवर्तन Textbook Questions and Answers
प्रश्न 1.
निम्न में से कौन-सा पदार्थ लेंस बनाने के लिए प्रयुक्त नहीं किया जा सकता?
(a) जल
(b) काँच
(c) प्लास्टिक
(d) मिट्टी
उत्तर:
(d) मिट्टी
प्रश्न 2.
किसी बिंब का अवतल दर्पण द्वारा बना प्रतिबिंब आभासी, सीधा तथा बिंब से बड़ा पाया गया। वस्तु की स्थिति कहाँ होनी चाहिए?
(a) मुख्य फोकस तथा वक्रता केंद्र के बीच
(b) वक्रता केंद्र पर
(c) वक्रता केंद्र से परे
(d) दर्पण के ध्रुव तथा मुख्य फोकस के बीच
उत्तर:
(d) दर्पण के ध्रुव तथा मुख्य फोकस के बीच
प्रश्न 3.
किसी बिंब का वास्तविक तथा समान साइज़ का प्रतिबिंब प्राप्त करने के लिए बिंब को उत्तल लेंस के सामने कहाँ रखें?
(a) लेंस के मुख्य फोकस पर
(b) फोकस दूरी की दोगुनी दूरी पर
(c) अनंत पर
(d) लेंस के प्रकाशिक केंद्र तथा मुख्य फोकस के बीच
उत्तर:
(b) फोकस दूरी की दोगुनी दूरी पर
प्रश्न 4.
किसी गोलीय दर्पण तथा किसी पतले गोलीय लेंस दोनों की फोकस दूरियाँ-15 cm हैं। दर्पण तथा लेंस संभवतः हैं –
(a) दोनों अवतल
(b) दोनों उत्तल
(c) दर्पण अवतल तथा लेंस उत्तल
(d) दर्पण उत्तल तथा लेंस अवतल
उत्तर:
(a) दोनों अवतल
प्रश्न 5.
किसी दर्पण से आप चाहे कितनी ही दूरी पर खड़े हों, आपका प्रतिबिंब सदैव सीधा प्रतीत होता है। संभवतः दर्पण है –
(a) केवल समतल
(b) केवल अवतल
(c) केवल उत्तल
(d) या तो समतल अथवा उत्तल
उत्तर:
(d) या तो समतल अथवा उत्तल
प्रश्न 6.
किसी शब्दकोष (dictionary) में पाए गए छोटे अक्षरों को पढ़ते समय आप निम्न में से कौन-सा लेंस पसंद करेंगे?
(a) 50 cm फोकस दूरी का एक उत्तल लेंस
(b) 50 cm फोकस दूरी का एक अवतल लेंस
(c) 5 cm फोकस दूरी का एक उत्तल लेंस
(d) 5 cm फोकस दूरी का एक अवतल लेंस
उत्तर:
(b) 50 cm फोकस दूरी का एक अवतल लेंस
प्रश्न 7.
15 cm फोकस दूरी के एक अवतल दर्पण का उपयोग करके हम किसी बिंब का सीधा प्रतिबिंब बनाना चाहते हैं। बिंब का दर्पण से दूरी का परिसर (range) क्या होना चाहिए? प्रतिबिंब की प्रकृति कैसी है? प्रतिबिंब बिंब से बड़ा है अथवा छोटा? इस स्थिति में प्रतिबिंब बनने का एक किरण आरेख बनाइए।
उत्तर:
अवतल दर्पण से वस्तु का सीधा प्रतिबिम्ब प्राप्त करने के लिए वस्तु को दर्पण के ध्रुव तथा मुख्य फोकस के बीच रखना होगा। अतः वस्तु की दर्पण के ध्रुव से दूरी 0 cm से अधिक तथा 15 cm से कम कुछ भी हो सकती है। वस्तु का प्रतिबिम्ब सीधा तथा आभासी है तथा आकार में वस्तु से बड़ा है। अभीष्ट किरण आरेख संलग्न चित्र में प्रदर्शित है।
प्रश्न 8.
निम्न स्थितियों में प्रयुक्त दर्पण का प्रकार बताइए
(a) किसी कार का अग्र-दीप (हैडलाइट)
(b) किसी वाहन का पार्श्व/पश्च-दृश्य दर्पण
(c) सौर भट्ठी अपने उत्तर की कारण सहित पुष्टि कीजिए।
उत्तर:
(a) कार की हैडलाइट में अवतल दर्पण का प्रयोग होता है; क्योंकि इसके द्वारा एक शक्तिशाली व समानांतर प्रकाशपुंज प्राप्त होता है।
(b) वाहन के पार्श्व/पश्च-दृश्य दर्पण में उत्तल दर्पण का प्रयोग होता है; क्योंकि इसके द्वारा पीछे आ रहे वाहनों का सीधा, छोटा व पूर्ण प्रतिबिंब प्राप्त होता है।
(c) सौर भट्ठी में अवतल दर्पण का प्रयोग होता है; क्योंकि यह सूर्य-प्रकाश की किरण को संकेन्द्रित कर देता है जिससे ऊष्मा प्राप्त होती है।
प्रश्न 9.
किसी उत्तल लेंस का आधा भाग काले कागज़ से ढक दिया गया है। क्या यह लेंस किसी बिंब का पूरा प्रतिबिंब बना पाएगा? अपने उत्तर की प्रयोग द्वारा जाँच कीजिए। अपने प्रेक्षणों की व्याख्या कीजिए।
उत्तर:
हाँ, यह लेन्स वस्तु का पूर्ण प्रतिबिम्ब बना सकेगा। प्रायोगिक सत्यापन प्रयोग विधि सर्वप्रथम प्रकाशिक बैंच पर एक स्टैंड में उत्तल लेन्स लगाते हैं। लेन्स की फोकस – दूरी से कुछ अधिक दूरी पर, स्टैंड पर एक जलती. हुई मोमबत्ती रखते हैं। अब लेन्स के दूसरी ओर से मोमबत्ती को देखते हैं। अब लेन्स के आधे भाग को काला कागज चिपकाकर ढक देते हैं। पुन: लेन्स के दूसरी ओर से मोमबत्ती को देखते हैं। प्रेक्षण प्रथम दशा में मोमबत्ती का पूरा तथा उल्टा प्रतिबिम्ब दूसरी ओर से दिखाई देता है।
कागज चिपकाने के बाद भी मोमबत्ती का पूरा प्रतिबिम्ब दिखाई देता है, परन्तु इसकी तीव्रता पहले की तुलना में कम हो जाती है। व्याख्या मोमबत्ती के किसी बिन्दु से चलने वाली विभिन्न किरणें लेन्स के विभिन्न भागों से अपवर्तित होकर किसी एक-ही बिन्दु पर मिलेंगी। आधा लेन्स काला कर देने पर भी उस बिन्दु पर प्रकाश किरणें आएँगी अर्थात् मोमबत्ती का पर्दे पर पूरा प्रतिबिम्ब प्राप्त होगा, परन्तु प्रतिबिम्ब की तीव्रता घट जाएगी, क्योंकि प्रकाश किरणों की संख्या कम हो जाएगी।
प्रश्न 10.
5 cm लंबा कोई बिंब 10 cm फोकस दूरी के किसी अभिसारी लेंस से 25 cm दूरी पर रखा जाता है। प्रकाश किरण-आरेख खींचकर बनने वाले प्रतिबिंब की स्थिति, साइज़ तथा प्रकृति ज्ञात कीजिए।
हल:
दिया है, h1 = 5 cm, u=-25 cm तथा f = + 10 cm
सूत्र
\(\frac{1}{υ}\) – \(\frac{1}{u}\) = \(\frac{1}{f}\)
\(\frac{1}{υ}\) = \(\frac{1}{u}\) + \(\frac{1}{f}\)
\(\frac{1}{υ}\) = \(\frac{1}{10}\) – \(\frac{1}{25}\)
\(\frac{1}{υ}\) = \(\frac{5-2}{50}\) = \(\frac{3}{50}\)
υ =\(\frac{50}{3}\) = 16.66 cm
अतः प्रतिबिंब लेंस की दूसरी तरफ 16.66 cm की दूरी पर प्राप्त होगा तथा वास्तविक व उलटा होगा।
अब,
h2= – 3.33 cm
अत : प्रतिबिंब उलटा तथा 3.33 cm ऊँचाई का होगा।
प्रश्न 11.
15 cm फोकस दूरी का कोई अवतल लेंस किसी बिंब का प्रतिबिंब लेंस से 10 cm दूरी पर बनाता है। बिंब लेंस से कितनी दूरी पर स्थित है? किरण आरेख खींचिए।
हल:
दिया है,
f = -15 cm, y = -10 cm तथा u = ?
सत्र = \(\frac{1}{υ}\) – \(\frac{1}{u}\) = \(\frac{1}{f}\)
\(\frac{1}{10}\) – \(\frac{1}{u}\) = \(\frac{1}{-15}\)
\(\frac{1}{-10}\) – \(\frac{1}{u}\) = \(\frac{1}{-15}\)
\(\frac{-1}{10}\) + \(\frac{-1}{15}\) = \(\frac{1}{u}\)
\(\frac{1}{u}\) = \(\frac{-3 + 2}{30}\)
u = -30 cm
अतः वस्तु अवतल दर्पण से 30 cm दूर रखी है।
प्रश्न 12.
15 cm फोकस दूरी के किसी उत्तल दर्पण से कोई बिंब 10 cm दूरी पर रखा है। प्रतिबिंब की स्थिति तथा प्रकृति ज्ञात कीजिए।
हल:
दिया है, f = 15 cm, u = -10 cm, y = ?
सूत्र,
\(\frac{1}{υ}\) + \(\frac{1}{u}\) = \(\frac{1}{f}\)
– \(\frac{1}{u}\) = \(\frac{1}{f}\) – \(\frac{1}{u}\) = \(\frac{1}{15}\) + \(\frac{1}{10}\)
\(\frac{1}{υ}\) = \(\frac{2+3}{30}\)
\(\frac{1}{υ}\) = \(\frac{5}{30}\) = \(\frac{1}{u}\) = \(\frac{5}{30}\) = u = \(\frac{30}{5}\)
υ = 6 cm
अतः प्रतिबिंब दर्पण के पीछे 6 cm दूर प्राप्त होगा तथा आभासी और सीधा होगा।
प्रश्न 13.
एक समतल दर्पण द्वारा उत्पन्न आवर्धन +1 है। इसका क्या अर्थ है?
उत्तर:
धनात्मक चिह्न का अर्थ है कि समतल दर्पण द्वारा बना प्रतिबिंब आभासी और सीधा है तथा प्रतिबिंब का आकार वस्तु के आकार जितना है।
प्रश्न 14.
5.0 cm लंबाई का कोई बिंब 30 cm वक्रता त्रिज्या के किसी उत्तल दर्पण के सामने 20 cm दूरी पर रखा गया है। प्रतिबिंब की स्थिति, प्रकृति तथा साइज़ ज्ञात कीजिए।
हल:
दिया है, u =-20 cm, R = 30 cm, h1 = 5.0 cm
तथा f = \(\frac{R}{2}\) = \(\frac{30}{2}\) = 15m
सूत्र, \(\frac{1}{υ}\) + \(\frac{1}{u}\) = \(\frac{1}{f}\)
\(\frac{1}{u}\) + \(\frac{1}{-20}\) = \(\frac{1}{+15}\)
\(\frac{1}{u}\) = \(\frac{1}{15}\) + \(\frac{1}{20}\) = \(\frac{4 + 3}{60}\) = \(\frac{7}{60}\) u = \(\frac{60}{7}\)cm = 8.57 cm
अतः प्रतिबिंब दर्पण के पीछे 8.57 cm दूर बनेगा।
सूत्र m = \(\frac{h_{2}}{h_{1}}\) = \(\frac{-υ}{u}\)से,
\(\frac{h_{2}}{h_{1}}\) = \(\frac{8.57}{20}\)
h2 = \(\frac{8.57 \times 5}{20}\frac{-υ}{u}\) = 2.175 cm
अतः प्रतिबिंब आभासी, सीधा और 2.175 cm ऊँचा है।
प्रश्न 15.
7.0 cm साइज़ का कोई बिंब 18 cm फोकस दूरी के किसी अवतल दर्पण के सामने 27 cm दूरी पर रखा गया है। दर्पण से कितनी दूरी पर किसी परदे को रखें कि उस पर वस्तु का स्पष्ट फोकसित प्रतिबिंब प्राप्त किया जा सके? प्रतिबिंब का साइज़ तथा प्रकृति ज्ञात कीजिए।
हल:
दिया है, h1 = 7 cm, u=-27 cm, f = -18 cm, υ = ?, h2 = ?
सूत्र, \(\frac{1}{υ}\) – \(\frac{1}{u}\) = \(\frac{1}{f}\)
\(\frac{1}{υ}\) = \(\frac{1}{f}\) – \(\frac{1}{u}\)
\(\frac{1}{υ}\) = \(\frac{1}{-18}\) + \(\frac{1}{27}\)
\(\frac{1}{υ}\) = \(\frac{-3+2}{54}\)
\(\frac{1}{υ}\) = – \(\frac{1}{54}\)
υ = – 54 cm
अतः पर्दे को दर्पण के सामने 54 cm दूर रखना होगा।
अब
h2 = -14 cm
प्रतिबिंब वास्तविक, उल्टा तथा 14 cm ऊँचा होगा।
प्रश्न 16.
उस लेंस की फोकस दूरी ज्ञात कीजिए जिसकी क्षमता -2.0 D है। यह किस प्रकार का लेंस है?
हल:
दिया है, लेंस की क्षमता, P = -2.0D
सूत्र,
P = \(\frac{1}{f}\) से,
∴ – 2 = \(\frac{1}{f}\)
f = – \(\frac{1}{2}\) n
f = \(\frac{-1}{2}\) x 100 cm = -50 cm
चूँकि फोकस दूरी ऋणात्मक है; अतः लेंस अवतल होगा।
प्रश्न 17.
कोई डॉक्टर +1.5 D क्षमता का संशोधक लेंस निर्धारित करता है। लेंस की फोकस दूरी ज्ञात कीजिए। क्या निर्धारित लेंस अभिसारी है अथवा अपसारी?
हल:
दिया है, लेंस की क्षमता, P = +1.5 D
p = \(\frac{1}{f}\) से,
∴ + 1.5 = \(\frac{1}{f}\)
f = \(\frac{1}{1.5}\)m = \(\frac{10}{15}\)m = \(\frac{2}{3}\)m = + 0.67 m
चूँकि लेंस की फोकस दूरी धनात्मक है; अतः लेंस की प्रकृति अभिसारी होगी।
Bihar Board Class 10 Science प्रकाश-परावर्तन तथा अपवर्तन Additional Important Questions and Answers
बहुविकल्पीय प्रश्न
प्रश्न 1.
समतल दर्पण की फोकस दूरी होती है – (2014)
(a) शून्य
(b) अनन्त
(c) 25 सेमी
(d) – 25 सेमी
उत्तर:
(b) अनन्त
प्रश्न 2.
यदि किसी वस्तु को एक दर्पण के सामने निकट रखने पर प्रतिबिम्ब सीधा बने, किन्तु दूर रखने पर उल्टा प्रतिबिम्ब बने तो वह दर्पण होगा – (2015)
(a) समतल दर्पण
(b) अवतल दर्पण
(c) उत्तल दर्पण
(d) इनमें से कोई नहीं
उत्तर:
(b) अवतल दर्पण
प्रश्न 3.
किसी अवतल दर्पण द्वारा आभासी, सीधा तथा आवर्धित प्रतिबिम्ब बनता है। वस्तु की स्थिति होगी – (2017)
(a) ध्रुव व फोकस के बीच
(b) फोकस तथा वक्रता केन्द्र के बीच
(c) वक्रता केन्द्र पर
(d) वक्रता केन्द्र से पीछे
उत्तर:
(a) ध्रुव व फोकस के बीच
प्रश्न 4.
संयुग्मी फोकस सम्भव है केवल –
(a) उत्तल दर्पण में
(b) अवतल दर्पण में
(c) समतल दर्पण में
(d) साधारण काँच में
उत्तर:
(b) अवतल दर्पण में
प्रश्न 5.
किसी 10 सेमी फोकस दूरी वाले अवतल दर्पण के सामने 20 सेमी की दूरी पर एक वस्तु रखी है, तो वस्तु का प्रतिबिम्ब –
(a) दर्पण के पीछे बनेगा
(b) दर्पण तथा फोकस के बीच बनेगा
(c) फोकस पर बनेगा
(d) दर्पण के वक्रता केन्द्र पर बनेगा
उत्तर:
(d) दर्पण के वक्रता केन्द्र पर बनेगा
प्रश्न 6.
एक अवतल दर्पण की वक्रता त्रिज्या 20 सेमी है। इसकी फोकस दूरी होगी (2018)
(a) -20 सेमी
(b) -10 सेमी
(c) + 40 सेमी
(d) + 10 सेमी
उत्तर:
(d) +10 सेमी
प्रश्न 7.
किसका दृष्टिक्षेत्र सबसे अधिक होता है? (2017)
(a) समतल दर्पण
(b) उत्तल दर्पण
(c) अवतल दर्पण
(d) उत्तल लेंस
उत्तर:
(b) उत्तल दर्पण
प्रश्न 8.
उत्तल दर्पण से प्रतिबिम्ब सदैव बनता है –
(a) वक्रता-केन्द्र तथा फोकस के बीच
(b) वक्रता-केन्द्र तथा अनन्त के बीच
(c) ध्रुव तथा फोकस के बीच
(d) कहीं भी बन सकता है यह वस्तु की स्थिति पर निर्भर करता है
उत्तर:
(c) ध्रुव तथा फोकस के बीच
प्रश्न 9.
उत्तल दर्पण के सामने रखी किसी वस्तु का प्रतिबिम्ब बनता है – (2012)
(a) वस्तु की स्थिति पर ही
(b) दर्पण के सामने वस्तु की स्थिति से दुगुनी दूरी पर
(c) दर्पण के सामने वस्तु की स्थिति से आधी दूरी पर
(d) दर्पण के पीछे
उत्तर:
(d) दर्पण के पीछे
प्रश्न 10.
उत्तल दर्पण से बनने वाले प्रतिबिम्ब की प्रकृति है – (2018)
(a) वास्तविक व सीधा
(b) आभासी व सीधा
(c) आभासी व उल्टा
(d) वास्तविक व उल्टा
उत्तर:
(b) आभासी व सीधा
प्रश्न 11.
एक उत्तल दर्पण की फोकस दूरी 10 सेमी है। दर्पण की वक्रता त्रिज्या होगी (2011, 12, 13, 14, 16)
(a) 10 सेमी
(b) 20 सेमी
(c) 30 सेमी
(d) 40 सेमी
उत्तर:
(b) 20 सेमी
प्रश्न 12.
यदि आपतन कोणा तथा परावर्तन कोणr हो तब अपवर्तित किरण विचलित होगी – (2013)
(a) i – r
(b) i+r
(c) i × r
(d) \(\frac{sini}{sinr}\)
उत्तर:
(a) i – r
प्रश्न 13.
यदि दो माध्यमों के सीमा-पृष्ठ पर एक प्रकाश-किरण लम्बवत् आपतित होती है तो अपवर्तन कोण होगा – (2013)
(a) 0°
(b) 45°
(c) 60°
(d) 90°
उत्तर:
(a) 0°
प्रश्न 14.
निम्न में से किसके सामने रखी वस्तु का प्रतिबिम्ब सदैव सीधा, आभासी तथा छोटा बनता है? (2012)
(a) उत्तल लेंस
(b) अवतल लेंस
(c) अवतल दर्पण
(d) समतल दर्पण।
उत्तर:
(b) अवतल लेंस
प्रश्न 15.
किसी वस्तु तथा उसके प्रतिबिम्ब की लेंस के प्रकाशिक केन्द्र से दूरी क्रमशः 10 सेमी और 30 सेमी है। वस्तु के प्रतिबिम्ब तथा वस्तु की लम्बाई का अनुपात होगा – (2017)
(a) 1
(b) 1 से अधिक
(c) 1 से कम
(d) अनन्त
उत्तर:
(c) 1 से कम
प्रश्न 16.
यदि उत्तल लेंस के सामने वस्तु 2f पर रखी जाए, तब उसका प्रतिबिम्ब बनेगा – (2011, 16)
(a) अनन्त पर
(b) 2 F पर
(c) F पर
(d) F तथा प्रकाशिक केन्द्र के बीच
उत्तर:
(b) 2 F पर
प्रश्न 17.
एक मीटर फोकस दूरी के उत्तल लेन्स की क्षमता होगी – (2018)
(a) – 1D
(b) + 2D
(c) + 1D
(d) + 1.5D
उत्तर:
(c) +1D
प्रश्न 18.
50 सेमी फोकस दूरी वाले उत्तल लेंस की क्षमता होगी (2012, 13, 14, 15, 16)
(a) -2 डायोप्टर
(b) + 2 डायोप्टर
(c) +0.02 डायोप्टर
(d) – 0.02 डायोप्टर
उत्तर:
(b) +2 डायोप्टर
प्रश्न 19.
एक उत्तल लेंस की क्षमता 5 D है। इसकी फोकस दूरी है – (2018)
(a) +50 सेमी
(b) -50 सेमी
(c) +20 सेमी
(d) -20 सेमी
उत्तर:
(c) + 20 सेमी
प्रश्न 20.
-10 D क्षमता वाले लेंस की फोकस दूरी होगी – (2015, 17)
(a) 10 सेमी
(b) 10 मीटर
(c) -10 सेमी
(d) -10 मीटर
उत्तर:
(c) -10 सेमी
प्रश्न 21.
निर्वात् में प्रकाश की चाल होती है – (2018)
(a) 3 × 107 मी / से
(b) 2 × 108 मी / से
(c) 3 × 108 मी / से
(d) 3 × 1010 मी / से
उत्तर:
(c) 3 × 108 मी / से
प्रश्न 22.
पूर्ण आन्तरिक परावर्तन के लिए आवश्यक शर्त होती है – (2018)
(a) प्रकाश किरण विरल माध्यम से सघन माध्यम में जाए
(b) प्रकाश किरण सघन माध्यम से विरल माध्यम में जाए
(c) आपतन कोण का मान, क्रान्तिक कोण से कम हो ।
(d) आपतन कोण का मान, क्रान्तिक कोण के बराबर हो
उत्तर:
(b) प्रकाश किरण सघन माध्यम से विरल माध्यम में जाए
अतिलघु उत्तरीय प्रश्न
प्रश्न 1.
आपतित किरण एवं परावर्तित किरणों के बीच का कोण 60° है। आपतन कोण कितना है ?
हल:
चूँकि आपतन कोण एवं परावर्तन कोण बराबर होते हैं। अत: आपतन कोण = \(\frac{60°}{2}\) = 30°
प्रश्न 2.
गोलीय दर्पण की फोकस दूरी तथा वक्रता-त्रिज्या में क्या सम्बन्ध है ? (2013, 14, 15, 17)
उत्तर:
गोलीय दर्पण की फोकस दूरी, वक्रता-त्रिज्या की आधी होती है।
अर्थात् f = \(\frac{r}{2}\)
प्रश्न 3.
किस प्रकार के दर्पण से सदैव आभासी प्रतिबिम्ब बनते हैं ?
उत्तर:
उत्तल दर्पण से सदैव आभासी प्रतिबिम्ब बनते हैं।
प्रश्न 4.
किस दर्पण की फोकस दूरी ऋणात्मक होती है तथा किसकी धनात्मक?
उत्तर:
अवतल दर्पण की फोकस दूरी ऋणात्मक तथा उत्तल दर्पण की धनात्मक होती है।
प्रश्न 5.
सदैव आभासी, सीधा तथा आकार में वस्तु से छोटे प्रतिबिम्ब को प्राप्त करने के लिए कौन-सा दर्पण प्रयुक्त करना चाहिए? या किस दर्पण से वस्तु का प्रतिबिम्ब सदैव ही सीधा, आभासी व छोटा दिखायी देता है? (2011, 15)
उत्तर:
उत्तल दर्पण।
प्रश्न 6.
अवतल दर्पण तथा उत्तल दर्पण से बनने वाले आभासी प्रतिबिम्ब में क्या अन्तर होता है? (2018)
उत्तर:
अवतल दर्पण से बनने वाले आभासी प्रतिबिम्ब का आकार वस्तु से बड़ा होता है जबकि उत्तल दर्पण से बनने वाले आभासी प्रतिबिम्ब का आकार वस्तु से छोटा होता है।
प्रश्न 7.
वस्त की किस स्थिति में अवतल दर्पण वास्तविक व आकार में बराबर प्रतिबिम्ब बनाता है ?
उत्तर:
जब वस्तु अवतल दर्पण के वक्रता केन्द्र पर स्थित हो।
प्रश्न 8.
जब वस्तु अवतल दर्पण के वक्रता केन्द्र पर हो, तब उसका प्रतिबिम्ब कहाँ तथा किस प्रकार का बनेगा?
उत्तर:
प्रतिबिम्ब वक्रता-केन्द्र पर ही बनेगा। यह वस्तु के आकार का, वास्तविक तथा उल्टा होगा।
प्रश्न 9.
अवतल दर्पण के दो उपयोग लिखिए। (2016)
उत्तर:
1. अवतल दर्पण को दाढ़ी बनाते समय प्रयोग किया जाता है।
2. कान, नाक व गले की जाँच करने के लिए डॉक्टरों द्वारा प्रयोग किया जाता है।
प्रश्न 10.
एक दर्पण, वस्तु का सीधा व आकार में छोटा प्रतिबिम्ब बनाता है, यह किस प्रकार का दर्पण है? प्रतिबिम्ब वास्तविक है अथवा आभासी?
उत्तर:
क्योंकि प्रतिबिम्ब सीधा व छोटा है; अत: दर्पण, उत्तल दर्पण है तथा प्रतिबिम्ब आभासी
प्रश्न 11.
सड़क पर लगे बल्बों के पीछे किस प्रकार के परावर्तक दर्पण का प्रयोग किया जाता है? इस दर्पण का एक और उपयोग लिखिए। (2012)
उत्तर:
उत्तल दर्पण का। इस दर्पण का उपयोग दूरदर्शी में भी किया जाता है।
प्रश्न 12.
एक उत्तल दर्पण की फोकस दूरी 10 सेमी है। इसके द्वारा किसी वस्तु का प्रतिबिम्ब अधिक-से-अधिक कितनी दूरी पर बनाया जा सकता है? (2014)
उत्तर:
अधिकतम 10 सेमी की दूरी पर।
प्रश्न 13.
एक दर्पण की फोकस दूरी f है। यदि इसे दो भागों में काट दिया जाता है तो प्रत्येक भाग की फोकस दूरी क्या होगी?
उत्तर:
दर्पण को काटने पर फोकस दूरी के मान में कोई परिवर्तन नहीं होगा। अत: फोकस दूरी f ही रहेगी।
प्रश्न 14.
एक उत्तल दर्पण की फोकस दूरी 10 सेमी है। एक वस्तु इसकी मुख्य अक्ष पर ध्रुव से 20 सेमी की दूरी पर रखी जाती है। वस्तु के प्रतिबिम्ब की स्थिति ज्ञात कीजिए। (2017)
हल:
दिया है : फोकस दूरी (f) = + 10
सेमी, दर्पण से वस्तु की दूरी (u) = – 20 सेमी,
दर्पण से प्रतिबिम्ब की दूरी (υ) = ?
दर्पण के सूत्र \(\frac {1}{f}\) = \(\frac {1}{υ}\) + \(\frac {1}{u}\) से
\(\frac {1}{10}\) = \(\frac {1}{2}\) – \(\frac {1}{20}\)
अथवा \(\frac {1}{u}\) = \(\frac {1}{10}\) + \(\frac {1}{20}\) = \(\frac {3}{20}\)
∴ υ = \(\frac {20}{3}\) = +6.7 सेमी
अत: प्रतिबिम्ब दर्पण के पीछे 6.7 सेमी की दूरी पर बनेगा।
प्रश्न 15.
यदि प्रकाश-किरण काँच के गुटके पर लम्बवत् गिरे तो अपवर्तन कोण कितना होगा? विचलन कोण कितना होगा?
उत्तर:
दोनों ही शून्य होंगे।
प्रश्न 16.
किस रंग के प्रकाश के लिए काँच का अपवर्तनांक अधिकतम और न्यूनतम होता है? (2011, 13, 15, 16, 17)
उत्तर:
बैंगनी रंग के प्रकाश के लिए अधिकतम तथा लाल रंग के प्रकाश के लिए न्यूनतम।
प्रश्न 17.
काँच, निर्वात एवं जल में से प्रकाश की चाल किसमें सबसे कम होती है तथा क्यों?
उत्तर:
काँच में, क्योंकि इसका अपवर्तनांक सबसे अधिक होता है।
प्रश्न 18.
संलग्न चित्र के अनुसार प्रकाश की किरण वायु से किसी माध्यम में प्रवेश करती है। वायु के सापेक्ष माध्यम का अपवर्तनांक ज्ञात कीजिए। (2015, 17)
हल:
यहाँ आपतन कोण (i) = 90° – 60° = 30°
तथा अपवर्तन कोण (r) = 90° – 45° = 45°
∴ वायु के सापेक्ष माध्यम का अपवर्तनांक
n = \(\frac {sini}{sinr}\) = \(\frac {sin 30}{sin 45}\) = \(\frac{1 / 2}{1 / \sqrt{2}}\)
\(\frac{\sqrt{2}}{2}\) = \(\frac{1}{\sqrt{2}}\)
प्रश्न 19.
काँच के प्रिज्म के पदार्थ के लिए अपवर्तनांक का सूत्र लिखिए। या यदि किसी प्रिज्म का कोण A तथा अल्पतम विचलन कोण gm हो तो प्रिज्म के पदार्थ का अपवर्तनांक n बताइए। (2015)
उत्तर:
काँच के प्रिज्म के पदार्थ का अपवर्तनांक
n = \(\frac{\sin \left(\frac{A+\delta_{m}}{2}\right)}{\sin \frac{A}{2}}\)
प्रश्न 20.
वायु में प्रकाश की चाल 3 x 108 मीटर/सेकण्ड है। उस माध्यम में प्रकाश की चाल ज्ञात कीजिए जिसका वायु के सापेक्ष अपवर्तनांक 1.5 है। (2011, 13, 15, 16)
हल:
वायु के सापेक्ष माध्यम का अपवर्तनांक
प्रश्न 21.
जल में प्रकाश की चाल 2.25 x 108 मी/से है। यदि जल का अपवर्तनांक \(\frac {4}{3}\) हो तो निर्वात् में प्रकाश की चाल ज्ञात कीजिए। (2017)
द्रल:
जल का निर्वात ले
निर्वात् में प्रकाश की चाल हल-जल का निर्वात् के सापेक्ष अपवर्तनांक =
निर्वात् में प्रकाश की चाल = \(\frac {4}{3}\) x 2.25 x 108 मी/से
= 3.0 x 108 मी/से
प्रश्न 22.
वाय के सापेक्ष जल तथा काँच के अपवर्तनांक क्रमश: 4/3 एवं 3/2 हैं। जल का काँच के सापेक्ष अपवर्तनांक ज्ञात कीजिए।(2011, 13, 15, 16, 17)
हल:
प्रश्नानुसार, anw = 4/3 तथा ang =3/2
∴ जल का काँच के सापेक्ष अपवर्तनांक = img
प्रश्न 23.
वायु तथा काँच में प्रकाश की चालें क्रमश: 3 x 10 मीटर/सेकण्ड तथा 2 x 108 मीटर/सेकण्ड हैं। वायु के सापेक्ष काँच का अपवर्तनांक ज्ञात कीजिए। (2011, 13, 17)
हल:
वायु में प्रकाश की चाल हल-वायु के सापेक्ष काँच का अपवर्तनांक
प्रश्न 24.
काँच का वायु के सापेक्ष अपवर्तनांक 1.5 है। वायु का काँच के सापेक्ष अपवर्तनांक की गणना कीजिए। (2014, 16)
हल:
वायु का काँच के सापेक्ष अपवर्तनांक
= \(\frac {1}{1.5}\) = 0.67
प्रश्न 25.
किसी लेंस के प्रकाशिक केन्द्र से क्या तात्पर्य है? (2017)
उत्तर:
लेंस के अन्दर मुख्य अक्ष पर स्थित वह बिन्दु जिससे होकर जाने वाली प्रकाश की किरणें अपवर्तन के पश्चात् आपतित किरण के समान्तर निकल जाती हैं, लेंस का प्रकाशिक केन्द्र कहलाता है।
प्रश्न 26.
एक प्रकाश-किरण पतले लेंस से अपवर्तन के पश्चात् बिना विचलित हुए सीधी निकल जाती है। उस बिन्दु का नाम बताइए।
उत्तर:
प्रकाशिक केन्द्र।
प्रश्न 27.
किस लेंस की फोकस दूरी ऋणात्मक होती है ?
उत्तर:
अवतल लेंस की।
प्रश्न 28.
किस लेंस द्वारा बना प्रतिबिम्ब सदैव आभासी व छोटा होता है ?
उत्तर:
अवतल लेंस द्वारा।
प्रश्न 29.
अवतल लेंस के सामने रखी वस्तु का प्रतिबिम्ब कहाँ बनेगा?
उत्तर:
फोकस बिन्दु व लेंस के बीच बनेगा।
प्रश्न 30.
किसी लेंस में वस्तु की लम्बाई तथा उसके प्रतिबिम्ब की लम्बाई में 1 : 4 का अनुपात है। इस दशा में तथा में अनुपात बताइए। (2014, 15)
उत्तर:
u : υ = 4 : 1
प्रश्न 31.
एक वस्तु का उत्तल लेंस द्वारा किसी पर्दे पर तीन गुना बड़ा प्रतिबिम्ब बनता है। यदि वस्तु तथा पर्दे की स्थितियाँ बदल दी जाएँ तो उस दशा में आवर्धन कितना होगा? (2011)
उत्तर:
\(\frac {1}{3}\) गुना।
प्रश्न 32.
किसी लेंस की क्षमता से आप क्या समझते हैं? (2014, 18)
उत्तर:
लेंस की प्रकाश की किरणों को अभिसरित या अपसरित करने की क्षमता को लेंस की क्षमता कहते हैं।
प्रश्न 33.
लेंस की क्षमता का सूत्र लिखिए।
या लेंस की फोकस दूरी तथा शक्ति (क्षमता) के बीच सम्बन्ध बताने वाला सूत्र लिखिए।
उत्तर:
लेंस की क्षमता उसकी फोकस दूरी के व्युत्क्रम के बराबर होती है, जबकि फोकस दूरी को मीटर में नापा गया हो।
प्रश्न 34.
लेंस की क्षमता का मात्रक लिखिए। या चश्मों के लेंसों की क्षमता किसमें नापते हैं ?
उत्तर:
लेंस की क्षमता डायोप्टर में मापते हैं।
प्रश्न 35.
किस लेंस की क्षमता धनात्मक तथा किस लेंस की क्षमता ऋणात्मक होती है ?
उत्तर:
उत्तल लेंस की क्षमता धनात्मक तथा अवतल लेंस की क्षमता ऋणात्मक होती है।
प्रश्न 36.
किसी लेंस की क्षमता – 2.0 डायोप्टर है। इसकी फोकस दूरी कितनी है तथा लेंस किस प्रकार का है ? (2012, 13, 14, 17)
हल:
लेंस की फोकस दूरी (f) सेमी में = \(\frac {100}{p}\) = \(\frac {100}{-2.0}\) = -5.0 सेमी (अवतल लेंस)
लघु उत्तरीय प्रश्न
प्रश्न 1.
परावर्तन के नियम लिखिए। उत्तर- समतल तल से परावर्तन के निम्नलिखित दो नियम हैं
प्रथम नियम:
तल पर अभिलम्ब तथा आपतित किरण के बीच का कोण और तल पर अभिलम्ब तथा परावर्तित किरण के बीच / का कोण बराबर होते हैं, अर्थात्
आपतन कोण ∠i = परावर्तन कोण ∠r
द्वितीय नियम आपतित किरण, अभिलम्ब तथा परावर्तित किरण सभी एक ही तल; जैसे कागज के तल में होते हैं।
प्रश्न 2.
अवतल दर्पण में आभासी प्रतिबिम्ब बनने का किरण आरेख बनाइए। इसके लिए वस्तु की स्थिति का उल्लेख कीजिए। (2011)
उत्तर:
अवतल दर्पण के सामने ध्रुव व फोकस के बीच रखी वस्तु का प्रतिबिम्ब आभासी बनता है। चित्र में वस्तु OO’, ध्रुव P तथा मुख्य फोकस F के बीच में है। O’ से मुख्य अक्ष के समान्तर चलने वाली किरण O’ A परावर्तित होकर मुख्य फोकस F में से होकर जाती है। दूसरी किरण O’B दर्पण पर अभिलम्बवत् गिरती है, अतः परावर्तित होकर उसी मार्ग पर लौट जाती है। ये दोनों परावर्तित किरणें दर्पण के पीछे बिन्दु। से आती हुई प्रतीत होती हैं। अत: I’ बिन्दु O’ का आभासी प्रतिबिम्ब है। I’ से मुख्य अक्ष पर लम्ब II’, वस्तु OO’ का पूरा प्रतिबिम्ब है। यह प्रतिबिम्ब दर्पण के पीछे बनता है तथा आभासी, सीधा व आकार में वस्तु से बड़ा है।
प्रश्न 3.
उत्तल दर्पण में प्रतिबिम्ब किस प्रकार का बनता है ? किरण आरेख खींचकर दर्शाइए।
किरण आरेख खींचकर दिखाइए कि उत्तल दर्पण से वस्तु का प्रतिबिम्ब सदैव आभासी,सीधा व छोटा बनता है।
एक उत्तल दर्पण के सामने रखी वस्तु का प्रतिबिम्ब किरण आरेख द्वारा दर्शाइए।
उत्तल दर्पण तथा उसके फोकस के बीच स्थित वस्तु के बने प्रतिबिम्ब की स्थिति तथा प्रकृति को आवश्यक किरण आरेख द्वारा समझाइए। (2011)
उत्तर:
उत्तल दर्पण द्वारा बना प्रतिबिम्ब सदैव ही वस्तु से छोटा, सीधा, आभासी तथा ध्रुव व फोकस के बीच बनता है। वस्तु AB के A बिन्दु से दो किरणें, AM (मुख्य अक्ष के समान्तर) तथा AN वक्रता केन्द्र की दिशा में उत्तल दर्पण से टकराकर क्रमश: MR (फोकस से आती हुई) तथा NA (वक्रता केन्द्र से आती हुई) की दिशा में परावर्तित हो जाती हैं।
(देखें चित्र)। पीछे बढ़ाने पर ये किरणें बिन्दु A’ पर मिलती हैं, इस प्रकार बिन्दु A का प्रतिबिम्ब बिन्दु A’ होगा। A’ से मुख्य अक्ष पर लम्ब A’B’ डाला। अतः वस्तु AB का प्रतिबिम्ब A’B’ होगा। यह प्रतिबिम्ब वस्तु से छोटा, सीधा तथा आभासी है।
प्रश्न 4.
अवतल दर्पण के सम्मुख स्थित वस्तु में प्रतिबिम्ब का बनना किरण आरेख द्वारा प्रदर्शित कीजिए जबकि वस्तु की स्थिति –
- वक्रता केन्द्र से अधिक दूरी पर
- वक्रता केन्द्र पर
- वक्रता केन्द्र तथा फोकस के बीच में
- फोकस तथा दर्पण के ध्रव के बीच हो। (2014)
उत्तर:
1. जब वस्तु दर्पण के वक्रता केन्द्र से अधिक दरी पर रखी हो प्रतिबिम्ब की स्थिति वक्रता केन्द्र तथा फोकस के बीच में,
आकार वस्तु से छोटा,
प्रकृति वास्तविक एवं उल्टा।
2. जब वस्तु दर्पण के वक्रता केन्द्र पर रखी हो
प्रतिबिम्ब की स्थिति वक्रता केन्द्र पर,
आकार वस्तु के बराबर,
प्रकृति वास्तविक एवं उल्टा।
3. जब वस्तु दर्पण के वक्रता केन्द्र तथा फोकस के – बीच में रखी हो में,
प्रतिबिम्ब की स्थिति वक्रता केन्द्र तथा अनन्त के बीच
आकार वस्तु से बड़ा (आवर्धित)
प्रकृति वास्तविक एवं उल्टा।
4. जब वस्तु दर्पण के ध्रुव व उसके फोकस के बीच में रखी हो
प्रतिबिम्ब की स्थिति दर्पण के पीछे,
आकार वस्तु से बड़ा,
प्रकृति आभासी व सीधा।
प्रश्न 5.
संयुग्मी फोकस किसे कहते हैं ?
उत्तर:
संयुग्मी फोकस Conjugate Focus उन दो बिन्दुओं को संयुग्मी फोकस कहते हैं जिनमें से एक बिन्दु पर रखी वस्तु का प्रतिबिम्ब दूसरे बिन्दु पर बनता है अर्थात् वस्तु तथा प्रतिबिम्ब की स्थिति को आपस में बदला जा सके। यदि कोई वस्तु उत्तल दर्पण के सामने रखी है तब उसका प्रतिबिम्ब दर्पण के पीछे बनता है तथा आभासी होता है, अतः प्रतिबिम्ब के स्थान पर वस्तु रखने से परावर्तन नहीं होगा। इसका यह अर्थ हुआ कि संयुग्मी फोकस केवल अवतल दर्पण में ही सम्भव है, उत्तल दर्पण में नहीं।
प्रश्न 6.
15 सेमी फोकस दूरी वाले अवतल दर्पण के सामने 30 सेमी की दूरी पर 2 सेमी लम्बाई की एक वस्तु रखी है। बनने वाले प्रतिबिम्ब की स्थिति, आकार तथा प्रकृति ज्ञात कीजिए
हल:
प्रश्नानुसार f = -15 सेमी (अवतल दर्पण), u = – 30 सेमी, O = 2 सेमी, υ = ?, I = ?
दर्पण के सूत्र, \(\frac {1}{f}\) = \(\frac {1}{υ}\) + \(\frac {1}{u}\) से,
\(\frac {1}{-15}\) = \(\frac {1}{υ}\) – \(\frac {1}{30}\) = \(\frac {1}{υ}\) = \(\frac {1}{30}\) – \(\frac {1}{15}\) = \(\frac {1 – 2}{30}\) = \(\frac {-1}{30}\)
∴ υ = -30 सेमी
अतः प्रतिबिम्ब दर्पण के सामने 30 सेमी की दूरी पर बनेगा।
\(\frac {I}{O}\) = \(\frac {υ}{u}\)
∴ \(\frac {I}{2}\) = –\(\frac {-30}{-30}\) = -1
I = -2 सेमी
∴ प्रतिबिम्ब की लम्बाई 2 सेमी होगी तथा यह वास्तविक व उल्टा होगा।
प्रश्न 7.
एक अवतल दर्पण के सामने 10 सेमी की दूरी पर रखी वस्तु का वास्तविक प्रतिबिम्ब 30 सेमी दूर बनता है। दर्पण की फोकस दूरी ज्ञात कीजिए।
हल:
दिया है : दर्पण से वस्तु की दूरी (u) = – 10 सेमी
दर्पण से प्रतिबिम्ब की दूरी (υ) = – 30 सेमी,
फोकस दूरी (f) = ?
दर्पण के सूत्र \(\frac {1}{f}\) = \(\frac {I}{υ}\) + \(\frac {I}{u}\) से,
\(\frac {1}{f}\) = \(\frac {1}{(-30)}\) + \(\frac {1}{(-10)}\) = –\(\frac {1}{30}\) – \(\frac {1}{10}\) = – \(\frac {4}{30}\)
f = –\(\frac {30}{4}\) = -7.5 सेमी
अत: अवतल दर्पण की फोकस दूरी (f) = 7.5 सेमी।
प्रश्न 8.
एक उत्तल दर्पण से 25 सेमी दूर रखी एक वस्तु के प्रतिबिम्ब की लम्बाई वस्तु की लम्बाई की आधी होती है। दर्पण की फोकस दूरी ज्ञात कीजिए। (2014)
हल:
दिया है, दर्पण से वस्तु की दूरी u = -25 सेमी
∴ उत्तल दर्पण से सीधा तथा आभासी प्रतिबिम्ब बनता है; अत: रेखीय आवर्धन m = \(\frac {1}{2}\)
सूत्र m = – \(\frac {υ}{u}\) से,
\(\frac {1}{2}\) = \(\frac {u}{-25}\) = \(\frac {u}{25}\)
u = \(\frac {25}{2}\) = 12.5 सेमी
दर्पण सूत्र
\(\frac {1}{υ}\) + \(\frac {1}{u}\) = \(\frac {1}{f}\) से,
\(\frac {1}{f}\) = \(\frac {1}{12.5}\) + \(\frac {1}{-25}\)
\(\frac {1}{f}\) = \(\frac {2}{25}\) – \(\frac {1}{25}\)= \(\frac {2-1}{25}\) = \(\frac {1}{25}\)
अतः उत्तल दर्पण की फोकस दूरी f = 25 सेमी
प्रश्न 9.
एक उत्तल दर्पण की फोकस दूरी 10 सेमी है। एक वस्तु को दर्पण के सम्मुख कहाँ रखा जाए कि वस्तु के आधे आकार का प्रतिबिम्ब बने?
हल:
दिया है : फोकस दूरी (f) = 10 सेमी,
आवर्धन (m) = \(\frac {1}{2}\),
माना वस्तु को दर्पण के सम्मुख u दूरी पर रखा जाए। तब
आवर्धन के सूत्र, m = \(\frac {υ}{u}\) से,
\(\frac {1}{2}\) = – \(\frac {u}{u}\)
u = – \(\frac {u}{2}\) सेमी
दर्पण के सूत्र \(\frac {1}{f}\) = \(\frac {1}{υ}\) + \(\frac {1}{u}\) से,
\(\frac {1}{10}\) = \(\frac {2}{u}\) + \(\frac {1}{u}\) = \(\frac {1}{u}\) = – \(\frac {1}{u}\) = – 10 सेमी
अत: वस्तु को उत्तल दर्पण के सम्मुख 10 सेमी दूर रखा जाए।
प्रश्न 10.
एक अवतल दर्पण की वक्रता-त्रिज्या 40 सेमी अर्थात् फोकस दूरी 20 सेमी है। दर्पण से 30 सेमी की दूरी पर रखी वस्तु के प्रतिबिम्ब की स्थिति ज्ञात कीजिए। क्या यह वास्तविक होगा?
(2011, 12, 13)
हल:
दिया है: अवतल दर्पण की वक्रता त्रिज्या, = -40 सेमी,
फोकस दूरी (f) =
दर्पण से वस्तु की दूरी (u) = -30
सेमी, दर्पण से प्रतिबिम्ब की दूरी (υ) = ?
दर्पण के सूत्र
\(\frac {1}{f}\) = \(\frac {1}{υ}\) + \(\frac {1}{u}\)से,
अथवा – \(\frac {1}{20}\) = \(\frac {1}{υ}\) – \(\frac {1}{30}\)
अतः \(\frac {1}{υ}\) = – \(\frac {1}{20}\) + \(\frac {1}{30}\) = – \(\frac {1}{60}\)
υ = -60 सेमी
अतः प्रतिबिम्ब अवतल दर्पण से 60 सेमी की दूरी पर वस्तु की ओर, उल्टा व वास्तविक बनेगा।
प्रश्न 11.
एक 15 सेमी फोकस दूरी वाले अवतल दर्पण से कितनी दूरी पर एक वस्तु रखी जाये कि उसका 5 गुना बड़ा वास्तविक प्रतिबिम्ब बने? प्रतिबिम्ब की स्थिति भी ज्ञात कीजिए। (2016)
हल:
दिया है, अवतल दर्पण की फोकस दूरी, f = – 15 सेमी, आवर्धन m = 5
वास्तविक प्रतिबिम्ब के लिए आवर्धन ऋणात्मक होगा। m =-\(\frac {υ}{u}\) = -5 ⇒ υ = 5u
सूत्र \(\frac {1}{f}\) = \(\frac {1}{υ}\) + \(\frac {1}{u}\) से
\(\frac {1}{-15}\) = \(\frac {1}{5u}\) + \(\frac {1}{u}\) या \(\frac {1+5}{5u}\) = – \(\frac {1}{15}\)
या 5u = -90 ⇒ u = -18 सेमी तथा υ = 5u = -90 सेमी
अतः स्पष्ट है कि वस्तु दर्पण के सामने 18 सेमी की दूरी पर रखी जाये। इस स्थिति में प्रतिबिम्ब दर्पण के सामने 90 सेमी की दूरी पर बनेगा।
प्रश्न 12.
प्रकाश के अपवर्तन के नियमों का उल्लेख कीजिए। (2013, 15)
या स्नैल का अपवर्तन सम्बन्धी नियम लिखिए।
उत्तर:
प्रकाश के अपवर्तन के निम्नलिखित दो नियम हैं –
1. आपतित किरण, अपवर्तित किरण तथा आपतन-बिन्दु पर अभिलम्ब तीनों एक ही तल में होते हैं।
2. किन्हीं दो माध्यमों के लिए तथा एक ही रंग के प्रकाश के लिए, आपतन कोण की ज्या (sine)
तथा अपवर्तन कोण की ज्या (sine) का अनुपात एक नियतांक होता है। यदि आपतन कोण i तथा अपवर्तन कोण r है तो
इस नियम को ‘स्नैल का नियम’ (Snell’s law) भी कहते हैं।
प्रश्न 13.
किसी माध्यम के अपवर्तनांक से क्या तात्पर्य है ? (2017)
उत्तर:
यदि प्रकाश का अपवर्तन निर्वात से किसी माध्यम में होता है, तब आपतन कोण के sine तथा अपवर्तन कोण के sine के अनुपात को उस माध्यम का निरपेक्ष अपवर्तनांक कहते हैं। इसे n से प्रदर्शित करते हैं।
प्रश्न 14.
वायु के सापेक्ष किसी द्रव का क्रान्तिक कोण 45° है। उस द्रव का अपवर्तनांक ज्ञात कीजिए। (2012, 13, 14, 16, 18)
हल:
वायु के सापेक्ष द्रव का अपवर्तनांक = \(\frac {1}{ sin C}\)
जहाँ C वायु के सापेक्ष द्रव का क्रान्तिक कोण है।
\(\frac {1}{sin 45°}\) = \(\frac{1}{1 / \sqrt{2}}\) = \(\sqrt{2}\)
प्रश्न 15.
यदि 1.5 अपवर्तनांक वाले काँच के प्रिज्म का कोण 60° है, तो प्रिज्म के अल्पतम विचलन कोण का मान क्या होगा? (sin 49° = 0.75) (2016)
हल:
दिया है, प्रिज्य कोण A = 60°,
काँच का अपवर्तनांक, n =1.5, 6m = ?
सूत्र प्रिज्म के पदार्थ का अपवर्तनांक
अत: प्रिज्य का अल्पतम विचलन कोण = 38°
प्रश्न 16.
लेंस के प्रथम फोकस एवं द्वितीय फोकस की परिभाषा दीजिए। एक उत्तल लेंस द्वारा किसी वस्तु के प्रतिबिम्ब बनने का किरण आरेख खींचिए, जब वस्तु2F पर रखी हो। (2017, 18)
उत्तर:
प्रथम फोकस: लेंस के मुख्य अक्ष पर स्थित वह बिन्दु जिससे चलकर आने वाली किरणें (उत्तल लेंस में) या जिसकी ओर चलकर आने वाली किरणें (अवतल लेंस में) अपवर्तन के पश्चात् मुख्य अक्ष के समान्तर हो जाती हैं लेंस का प्रथम फोकस कहलाता है।
द्वितीय फोकस: मुख्य अक्ष के समान्तर चलने वाली किरणें लेंस से अपवर्तन के पश्चात् मुख्य अक्ष के जिस बिन्दु पर मिलती हैं (उत्तल लेंस) अथवा मुख्य अक्ष के जिस बिन्दु से निकलती हुई प्रतीत होती हैं (अवतल लेंस) वह बिन्दु लेंस का द्वितीय फोकस कहलाता है।
प्रश्न 17.
एक उत्तल लेंस के सामने उसके प्रकाशिक केन्द्र और फोकस के बीच एक वस्तु रखी है। किरण आरेख खींचकर प्रतिबिम्ब का बनना दर्शाइए। प्रतिबिम्ब की प्रकृति भी बताइए। (2013, 16, 17)
उत्तर:
वस्तु लेंस के सामने उसके प्रकाशिक केन्द्र और फोकस के बीच में है (देखें चित्र)-बिन्दु O’ से मुख्य अक्ष के समान्तर किरण O’ A, लेंस से निकलकर AF दिशा में जाती है तथा दूसरी किरण O’C सीधी निकल जाती है। ये दोनों किरणें पीछे बढ़ाने पर I’ पर मिलती हैं। अत: I’ बिन्दु O’ का आभासी प्रतिबिम्ब है। I’ से मुख्य अक्ष पर लम्ब II’, वस्तु OO’ का पूरा प्रतिबिम्ब है। यह प्रतिबिम्ब लेंस के उसी ओर बनता है तथा आभासी, सीधा व वस्तु से बड़ा है।
प्रश्न 18.
उत्तल लेंस के फोकस पर स्थित वस्तु के प्रतिबिम्ब का बनना आरेख खींचकर दर्शाइए। बने हुए प्रतिबम्ब की प्रकृति एवं स्थिति भी लिखिए। (2014)
उत्तर:
वस्तु प्रथम फोकस F’ पर है (चित्र)-O’ से मुख्य अक्ष के समान्तर चलने वाली किरण O’A, अपवर्तन के पश्चात् द्वितीय फोकस F से होकर जाती है। दूसरी किरण O’C जो प्रकाशिक-केन्द्र C में को गुजरती है, सीधी चली जाती है। दोनों निर्गत किरणें आपस में समान्तर हैं, अतः अनन्तता पर मिलेंगी। स्पष्ट है कि प्रतिबिम्ब अनन्तता पर, वास्तविक, उल्टा व वस्तु से बड़ा होगा।
प्रश्न 19.
15 सेमी फोकस दूरी वाले उत्तल लेंस से 30 सेमी की दूरी पर स्थित वस्तु के प्रतिबिम्ब की स्थिति एवं दूरी ज्ञात कीजिए। (2016, 17)
हल:
दिया है, f = 15 सेमी, u=-30 सेमी, υ = ?
लेंस के सूत्र \(\frac {1}{f}\) =\(\frac {1}{υ}\) – \(\frac {1}{u}\) से,
\(\frac {1}{15}\) = \(\frac {1}{υ}\) – \(\frac {1}{-30}\)
या \(\frac {1}{15}\) = \(\frac {1}{υ}\) + \(\frac {1}{30}\)
या \(\frac {1}{υ}\) = \(\frac {1}{15}\) – \(\frac {1}{30}\) = \(\frac {1}{30}\)
⇒ υ = 30 सेमी
∴ प्रतिबिम्ब की स्थिति लेंस के दूसरी ओर लेंस से 30 सेमी की दूरी पर होगी
तथा प्रतिबिम्ब की वस्तु से दूरी = 30 + 30 = 60 सेमी
प्रश्न 20.
10 सेमी फोकस दूरी वाले उत्तल लेंस से 20 सेमी दूर 10 सेमी लम्बी एक मोमबत्ती रखी गयी है। लेंस से बने मोमबत्ती के प्रतिबिम्ब की स्थिति, प्रकृति तथा लम्बाई ज्ञात कीजिए। (2013, 14, 17, 18)
हल:
दिया है, u=-20 सेमी, f = 10 सेमी, υ = ?
लेंस के सूत्र \(\frac {1}{f}\) =\(\frac {1}{υ}\) – \(\frac {1}{u}\) से,
\(\frac {1}{10}\) = \(\frac {1}{υ}\) – \(\frac {1}{-20}\)= \(\frac {1}{υ}\) + \(\frac {1}{20}\)
या \(\frac {1}{u}\) = \(\frac {1}{10}\) – \(\frac {1}{20}\) = \(\frac {1}{20}\) या υ = 2.0 सेमी
चूँकि υ का मान धनात्मक है, अतः प्रतिबिम्ब लेंस से 20 सेमी की दूरी पर लेंस के दूसरी ओर बनेगा।
आवर्धन, m = \(\frac {I}{O}\) = \(\frac {υ}{u}\)
∴ \(\frac {I}{10}\) = \(\frac {20}{-20}\).
या I = -1 x 10 = -10 सेमी
∴ प्रतिबिम्ब 10 सेमी लम्बा तथा उल्टा बनेगा व वास्तविक होगा।
प्रश्न 21.
20 सेमी फोकस दूरी वाले अवतल लेंस के सामने लेंस से 30 सेमी दूर रखी वस्तु के प्रतिबिम्ब की स्थिति ज्ञात कीजिए। (2011, 13)
हल:
दिया है, लेंस की फोकस दूरी f = – 20 सेमी, लेंस से वस्तु की दूरी (u) = -30 सेमी तथा लेंस से प्रतिबिम्ब की दूरी (υ) = ?
लेंस के सूत्र \(\frac {1}{f}\) =\(\frac {1}{υ}\) – \(\frac {1}{u}\) से,
\(\frac {1}{-20}\) =\(\frac {1}{υ}\) – \(\frac {1}{-30}\)
या \(\frac {1}{υ}\) =\(\frac {1}{30}\) – \(\frac {1}{20}\)
या \(\frac {1}{υ}\) =\(\frac {2-3}{60}\) = \(\frac {-1}{60}\)
या υ = 60 सेमी
अतः प्रतिबिम्ब वस्तु की ओर ही लेंस से 60 सेमी की दूरी पर बनेगा।
प्रश्न 22.
एक उत्तल लेंस की फोकस दूरी 50 सेमी है। किसी वस्तु के दो गुना वास्तविक प्रतिबिम्ब को प्राप्त करने के लिए उसे लेंस से कितनी दूर रखना होगा? (2012, 14, 18)
हल:
दिया है, उत्तल लेंस की फोकस दूरी = 50 सेमी
प्रतिबिम्ब वास्तविक है, अत: आवर्धन ऋणात्मक होगा।
आवर्धन m = \(\frac {υ}{u}\) = -2
अथवा υ = -2u,
लेंस के सूत्र,
\(\frac {1}{f}\) =\(\frac {1}{υ}\) – \(\frac {1}{u}\) से,
\(\frac {1}{f}\) = –\(\frac {1}{2u}\) – \(\frac {1}{u}\) = – \(\frac {3}{2u}\)
अतः वस्तु की स्थिति (u) = \(\frac {3}{2}\) x 50 =-75 सेमी
अत: वस्तु को लेंस से 75 सेमी की दूरी पर रखना चाहिए।
प्रश्न 23.
एक उत्तल लेंस से 15 सेमी दूर रखी वस्तु का दोगुना बड़ा वास्तविक प्रतिबिम्ब बनता है। लेंस की फोकस दूरी ज्ञात कीजिए। (2016)
हल:
दिया है, उत्तल लेंस से वस्तु की दूरी, u = -15 सेमी
चूँकि प्रतिबिम्ब वास्तविक है, अत: आवर्धन ऋणात्मक होगा।
आवर्धन m = \(\frac {υ}{u}\) = -2 या υ = -2u
υ = -2 x (-15) = 30 सेमी
लेंस के सूत्र, \(\frac {1}{f}\) =\(\frac {1}{υ}\) – \(\frac {1}{u}\) से,
\(\frac {1}{f}\) = \(\frac {1}{30}\) – \(\frac {1}{-15}\)= \(\frac {1}{30}\) =\(\frac {1}{15}\) – \(\frac {3}{30}\)
f = \(\frac {3}{30}\) = 10 सेमी
अतः लेंस की फोकस दूरी 10 सेमी है।
प्रश्न 24.
उत्तल लेंस से 30 सेमी दूर स्थित एक वस्तु का वास्तविक प्रतिबिम्ब 20 सेमी दूर बनता है। लेंस की फोकस दूरी ज्ञात कीजिए। स्वच्छ किरण आरेख भी खींचिए। (2015, 16)
हल:
दिया है, u = -30 सेमी, υ = 20 सेमी, फोकस दूरी f = ?
लेंस के सूत्र = \(\frac {1}{f}\) =\(\frac {1}{υ}\) – \(\frac {1}{u}\) से,
\(\frac {1}{f}\) =\(\frac {1}{20}\) – (\(\frac {1}{30}\)) = \(\frac {1}{20}\) =\(\frac {1}{30}\) – \(\frac {3 + 2}{60}\) या f = \(\frac {60}{5}\) = 12 सेमी
लेंस की फोकस दूरी 12 सेमी है।
किरण आरेख इस प्रकार होगा –
प्रश्न 25.
5 सेमी ऊँचाई की एक वस्तु 25 सेमी फोकस दूरी वाले अवतल लेंस से 50 सेमी की दूरी पर रखी है। बनने वाले प्रतिबिम्ब की ऊँचाई एवं स्थिति ज्ञात कीजिए। (2015)
हल:
दिया है, लेंस से वस्तु की दूरी (u) = -50 सेमी,
लेंस की फोकस दूरी (f) = -25 सेमी,
लेंस से प्रतिबिम्ब की दूरी (υ) = ?
लेंस के सूत्र \(\frac {1}{f}\) =\(\frac {1}{υ}\) – \(\frac {1}{u}\) से,
– \(\frac {1}{25}\) =\(\frac {1}{υ}\) – \(\frac {1}{-50}\) या
\(\frac {1}{υ}\) = – \(\frac {1}{25}\) – \(\frac {1}{50}\) = – \(\frac {3}{50}\)
अत: υ = -50/3 = -16.67 सेमी
अत: प्रतिबिम्ब वस्तु की ही ओर, लेंस से 16.67 सेमी दूरी पर बनेगा।
आवर्धन के सूत्र (m) = \(\frac {υ}{u}\) = \(\frac {I}{O}\) से
या I = \(\frac {1}{3}\) x 5 = 1.67 सेमी
अतः प्रतिबिम्ब का. आकार I = 1.67 सेमी तथा यह सीधा होगा।
प्रश्न 26.
उत्तल लेंस से 0.15 मीटर दूरी पर स्थित वस्त का प्रतिबिम्ब दूसरी ओर 0.60 मीटर दूरी पर बन रहा है। यदि वस्तु की लम्बाई 0.15 मीटर हो तो प्रतिबिम्ब की लम्बाई क्या होगी?
(2013)
हल:
दिया है: लेंस से वस्तु की दूरी (u) = – 0.15 मीटर,
वस्तु का आकार (O) = 0.15 मीटर,
लेंस से प्रतिबिम्ब की दूरी (υ) = 0.60 मीटर,
प्रतिबिम्ब का आकार (I) = ?
आवर्धन के सूत्र m = \(\frac {I}{O}\) = \(\frac {υ}{u}\) से, \(\frac {I}{0.15}\) = \(\frac {0.60}{- 0.15}\)
अथवा प्रतिबिम्ब की लम्बाई (I) = \(\frac {0.60 x 0.15}{0.15}\) = 0.60 मीटर
अर्थात् प्रतिबिम्ब 0.60 मीटर लम्बा, उल्टा व वास्तविक बनेगा।
प्रश्न 27.
एक वस्तु का उत्तल लेंस द्वारा किसी पर्दे पर प्रतिबिम्ब 3 गुना बड़ा बनता है। यदि वस्तु और पर्दे की स्थितियाँ बदल दी जायें तो उस दशा में आवर्धन कितना होगा? (2017)
हल:
हम जानते हैं कि आवर्धन (m) = υ/u
प्रश्नानुसार, 3=υ/u ⇒ υ = 3u
वस्तु तथा पर्दे की स्थितियाँ बदलने पर,
आवर्धन (m) = \(\frac {u}{υ}\) = \(\frac {u}{3u}\) = \(\frac {1}{3}\)
प्रश्न 28.
एक उत्तल लेंस की मुख्य अक्ष पर प्रकाशिक केन्द्र से 36 सेमी दूरी पर स्थित वस्तु का प्रतिबिम्ब प्रकाशिक केन्द्र से उतनी ही दूरी पर दूसरी ओर बनता है। लेंस की फोकस दूरी तथा रेखीय आवर्धन ज्ञात कीजिए। (2017)
हल:
प्रश्नानुसार u=-36 सेमी, υ = 36 सेमी f = ? तथा m = ?
लेंस के लिए सूत्र, \(\frac {1}{f}\) =\(\frac {1}{υ}\) – \(\frac {1}{u}\)से,
\(\frac {1}{f}\) = \(\frac {1}{36}\) – (\(\frac {1}{36}\)) = \(\frac {1}{36}\) + \(\frac {1}{36}\) = \(\frac {2}{36}\)
∴ f = \(\frac {36}{2}\) = 18 सेमी
तथा रेखीय आवर्धन, m =\(\frac {υ}{u}\) = \(\frac {36}{-36}\) = -1
दीर्घ उत्तरीय प्रश्न
प्रश्न 1.
किसी गोलीय दर्पण (अवतल दर्पण) के लिए सूत्र \(\frac {1}{f}\) =\(\frac {1}{υ}\) – \(\frac {1}{u}\) का निगमन कीजिए।जहाँ संकेतों का सामान्य अर्थ है। (2012, 13)
या अवतल दर्पण के लिए u, υ तथा में सम्बन्ध लिखिए। (2012, 18)
उत्तर:
माना कि M1M2 एक अवतल दर्पण है जिसका ध्रुव P है, फोकस F है तथा वक्रता केन्द्र C है (देखें चित्र)। इसकी मुख्य अक्ष के किसी बिन्दु पर एक वस्तु AB रखी है। वस्तु के सिरे A से मुख्य अक्ष के. समान्तर चलने वाली आपतित किरण AM दर्पण के बिन्दु M से टकराती है। परावर्तन के पश्चात् यह किरण दर्पण के फोकस F से होकर गुजरती है। दूसरी किरण AO दर्पण के वक्रता केन्द्र C से होकर जाती है तथा परावर्तन के पश्चात् उसी मार्ग से वापस लौट जाती है। दोनों परावर्तित किरणें A’ बिन्दु पर काटती हैं।
इस बिन्दु A’ से मुख्य अक्ष पर डाला गया लम्ब A’B’, वस्तु AB का प्रतिबिम्ब है। अब माना कि वस्तु AB की दर्पण के ध्रुव से दूरी PB = -1, प्रतिबिम्ब A’B’ की दूरी PB’ = – υ, दर्पण की वक्रता-त्रिज्या PC = – R तथा दर्पण की फोकस दूरी PF = – f है। (ये सभी दूरियाँ चूंकि आपतित किरण के चलने की दिशा के विपरीत दिशा में नापी जाती हैं अर्थात् दर्पण के बायीं ओर हैं; अत: चिह्न परिपाटी के अनुसार ये दूरियाँ ऋणात्मक हैं )।
त्रिभुज ABC तथा त्रिभुज A’B’C समकोणिक हैं।
अतः \(\frac {AB}{A’B’}\) = \(\frac {CB}{B’C}\) …..(i)
इसी प्रकार, त्रिभुज A’ B’ F तथा त्रिभुज MNF भी समकोणिक हैं।
– \(\frac {MN}{A’B’}\) = \(\frac {NF}{FB’}\) …..(ii)
परन्तु MN = AB है,
अतः \(\frac {AB}{A’B’}\) = \(\frac {NF}{FB’}\) …..(iii)
समीकरण (i) व (iii) की तुलना करने पर,
\(\frac {CB}{B’C}\) = \(\frac {NF}{FB’}\) …..(iv)
माना कि दर्पण पर बिन्दु M, ध्रुव P के बहुत समीप है, तब N व P बिन्दु अत्यन्त निकट होंगे।
उस स्थिति में, NF = PF (लगभग)
यह मान समीकरण (iv) में रखने पर,
\(\frac {CB}{B’C}\)= \(\frac {PF}{FB’}\)
अथवा \(\frac {PB-PC}{PC-PB’}\) = \(\frac {PF}{PB’ – PF}\)
चिह्न सहित मान रखने पर,
\(\frac {-u – (-R)}{-R – (-υ) }\) = \(\frac {-f}{-υ – (-f}\)
परन्तु R = 2f, अत:
\(\frac {-u + 2f}{-2f + υ}\) = \(\frac {-f}{-υ + f}\)
या (-u+2f) (-υ + f) = -f(-2f + υ)
या uυ – uf – 2 fυ + 252 = 2F2 – fy
या uυ – uf – fy = 0
या uf + fy = uυ
दोनों ओर urf से भाग करने पर,
\(\frac {1}{υ}\) + \(\frac {1}{u}\) – \(\frac {1}{f}\)
यही सूत्र अवतल दर्पण के लिए फोकस दूरी तथा दर्पण से वस्तु और प्रतिबिम्ब की दूरियों में सम्बन्ध का सूत्र है।
प्रश्न 2.
उत्तल दर्पण के लिए सूत्र \(\frac {1}{f}\) =\(\frac {1}{υ}\) – \(\frac {1}{u}\) का निगमन कीजिए, जहाँ संकेतों के समान्य अर्थ हैं। (2013, 16)
हल:
उत्तल दर्पण के लिए u, तथा f में सम्बन्ध माना, M1M2 एक उत्तल दर्पण है जिसका ध्रुव P, फोकस F तथा वक्रता केन्द्र C है। इसकी मुख्य अक्ष पर कोई वस्तु AB रखी है। वस्तु के सिरे B से मुख्य अक्ष के समान्तर चलने वाली आपतित किरण BD, दर्पण के बिन्दु D पर गिरती है। परावर्तन के पश्चात् यह किरण दर्पण के फोकस F से आती प्रतीत होती है।
दूसरी किरण BI, वक्रता-केन्द्र की सीध में दर्पण पर आपतित होती है तथा परावर्तन के पश्चात् उसी मार्ग में लौट आती है। ये दोनों परावर्तित किरणे B’ से आती हुई प्रतीत होती हैं जो कि B का प्रतिबिम्ब है। B’ से मुख्य अक्ष पर खींचा गया लम्ब A’B’ ही वस्तु AB का आभासी प्रतिबिम्ब है। यह प्रतिबिम्ब फोकस तथा ध्रुव के बीच में है (देखें चित्र)।
माना, दर्पण के ध्रुव P से, वस्तु की दूरी PA = -u, प्रतिबिम्ब की दूरी PA’ = + υ, दर्पण की वक्रता-त्रिज्या PC =r तथा दर्पण की फोकस दूरी PF = f है। बिन्दु D से मुख्य अक्ष पर अभिलम्ब DN है।
ΔABC तथा ΔCB’A’ समकोणिक हैं।
\(\frac {AB}{A’B’}\) = \(\frac {CA}{A’C}\) ……..(i)
इसी प्रकार, ΔA’B’F तथा ΔNDF समकोणिक हैं।
\(\frac {ND}{A’B’}\) = \(\frac {NF}{A’F}\)
परन्तु DN = AB
\(\frac {AB}{A’B’}\) = \(\frac {NF}{A’F}\) ……….(ii)
A’B’ AF समीकरण (i) व समीकरण (ii) से,
\(\frac {CA}{A’C}\) = \(\frac {NF}{A’F}\)
माना, बिन्दु D दर्पण के ध्रुव P के बहुत समीप है। तब NF = PF (लगभग)
\(\frac {CA}{A’C}\) = \(\frac {PF}{A’F}\)
अथवा \(\frac {PC + PA}{PC – PA}\) = \(\frac {PF}{PF – PA’}\)
इस समीकरण में चिह्न सहित मान रखने पर,
\(\frac {r – u}{r – υ}\) = \(\frac {f}{f – C}\)
\(\frac {+2f – u}{2f – υ}\) = \(\frac {f}{f – υ}\)
अथवा f (2f – υ) = (f – υ) (2f – u)
अथवा 2f2 – υf = 2f2 – uf – 2uf + uυ
υf + uf = uw
दोनों ओर uυf से भाग देने पर,
\(\frac {1}{υ}\) + \(\frac {1}{u}\) – \(\frac {1}{f}\)
वस्तु की प्रत्येक स्थिति के लिए उत्तल दर्पण द्वारा बना प्रतिबिम्ब आभासी, सीधा व वस्तु से छोटा तथा दर्पण के ध्रुव व फोकस के बीच बनता है।
प्रश्न 3.
रेखीय आवर्धन किसे कहते हैं ? गोलीय दर्पण में बने प्रतिबिम्ब के रेखीय आवर्धन के लिए सूत्र m = – \(\frac {υ}{u}\) स्थापित कीजिए। (2014)
उत्तर:
रेखीय आवर्धन प्रतिबिम्ब की लम्बाई तथा वस्तु की लम्बाई के अनुपात को रेखीय आवर्धन (m) कहते हैं जबकि दोनों लम्बाइयाँ मुख्य अक्ष के लम्बवत् नापी गई हों। चूँकि मुख्य अक्ष के ऊपर की दूरियाँ धनात्मक तथा नीचे की दूरियाँ ऋणात्मक ली जाती हैं, अतः सीधे प्रतिबिम्बों के लिये आवर्धन धनात्मक तथा उल्टे प्रतिबिम्बों के लिये ऋणात्मक होता है। आवर्धन के लिये सूत्र माना कि M1,M2, (देखें चित्र) एक ० अवतल दर्पण है। इसका ध्रुव P, मुख्य फोकस F तथा वक्रता-केन्द्र C है। इसकी मुख्य अक्ष पर एक वस्तु OO’ रखी है जिसका उल्टा – तथा वास्तविक प्रतिबिम्ब II’ बनता है। अत: वस्तु की नोंक O’ से चलने वाली किरण O’ P, परावर्तन के पश्चात् प्रतिबिम्ब की नोंक I’ से होकर जायेगी। चूँकि अक्ष PO, दर्पण के बिन्दु P पर अभिलम्ब है, अत: ZO’ PO आपतन कोण तथा ∠OPI’ परावर्तन कोण होगा।
अब ∠O’ PO = ∠OPI’ (परावर्तन का नियम)
∠POO’ = ∠PII’ (समकोण है)
अत: ΔOO’ P तथा ΔII’ P समकोणिक हैं।
\(\frac {II’}{OO’}\) = \(\frac {PI}{PO}\)
माना कि II’ =-y2,OO’ = + y1, PI = -υ तथा PO =-u (चिह्न परिपाटी के अनुसार y1 धनात्मक और u, υ तथा y2 ऋणात्मक हैं)। तब
\(\frac{-y_{2}}{y_{1}}=\frac{-υ}{-u}\)
अत: आवर्धन m = \(\frac{y_{2}}{y_{1}}=-\frac{υ}{u}\)
उत्तल दर्पण के लिए भी आवर्धन का यही सूत्र होगा।
प्रश्न 4.
प्रकाश के पूर्ण आन्तरिक परावर्तन का अर्थ समझाइए। क्रान्तिक कोण तथा अपवर्तनांक के बीच सम्बन्ध का व्यंजक भी स्थापित कीजिए। (2016, 17)
या पूर्ण आन्तरिक परावर्तन को उदाहरण सहित समझाइए। (2012, 13)
उत्तर:
जब कोई प्रकाश की किरण OA (देखें चित्र (a))किसी सघन माध्यम (जैसे काँच) से विरल माध्यम (जैसे वायु) में जाती है तो इसका एक छोटा भाग AC परावर्तित हो जाता है तथा अधिकांश भाग AB अपवर्तित हो जाता है। अपवर्तित किरण AB, अभिलम्ब से दूर हटती है। इस दशा में अपवर्तन कोण (r) आपतन कोण (i) से बड़ा होता है।
अब यदि आपतन कोण का मान धीरे-धीरे बढ़ाते जाएँ तो अपवर्तन कोण भी बढ़ता जाता है तथा एक विशेष आपतन कोण के लिए अपवर्तन कोण 90° हो जाता है (देखें चित्र (b))। इस आपतन कोण को ‘क्रान्तिक कोण’ कहते हैं तथा C से प्रदर्शित करते हैं। अत: क्रान्तिक कोण C, सघन माध्यम में बना वह आपतन कोण है जिसके लिए विरल माध्यम में अपवर्तन कोण 90° होता है।
अब यदि आपतन कोण को और बढ़ाएँ अर्थात्, आपतन कोण का मान क्रान्तिक कोण से थोड़ा-सा अधिक कर दें तो प्रकाश विरल माध्यम में बिल्कुल नहीं जाता, बल्कि ‘सम्पूर्ण’ प्रकाश परावर्तित होकर सघन माध्यम में ही लौट आता है [देखें चित्र (c)]। इस घटना को प्रकाश का ‘पूर्ण आन्तरिक परावर्तन’ कहते हैं क्योंकि इसमें प्रकाश का अपवर्तन बिल्कुल नहीं होता; सम्पूर्ण आपतित प्रकाश परावर्तित हो जाता है। किसी पृष्ठ के जिस भाग से पूर्ण आन्तरिक परावर्तन होता है, वह भाग बहुत चमकने लगता है। इस प्रकार पूर्ण परावर्तन केवल तब ही सम्भव है जबकि निम्नलिखित दो शर्त परी हों
- प्रकाश सघन माध्यम से विरल माध्यम में जा रहा हो।
- आपतन कोण क्रान्तिक कोण से बड़ा हो।
अपवर्तनांक तथा क्रान्तिक कोण में सम्बन्ध यदि विरल माध्यम को 1 से तथा सघन माध्यम को 2 से प्रदर्शित करें तो स्नैल के नियमानुसार सघन माध्यम के सापेक्ष विरल माध्यम का अपवर्तनांक –
2n1 = \(\frac {sini}{sinr}\)
जब आपतन कोण i = क्रान्तिक कोण C, तब अपवर्तन कोण r = 90°
2n1 = \(\frac {sinC}{sin90°}\) = sin C [:: sin 90° = 1]
परन्तु 1n2 = \(\frac{1}{{ }_{1} n_{2}}\) जहाँ 1n2विरल माध्यम के सापेक्ष सघन माध्यम का अपवर्तनांक है।
\(\frac{1}{{ }_{1} n_{2}}\) = sin C अथवा 1n2 = \(\frac {1}{sinC}\)
उगहरणार्थ, यदि प्रकाश काँच से वायु में जा रहा हो तो वायु के सापेक्ष काँच का अपवर्तनांक
ang = \(\frac {1}{sinC}\)
प्रश्न 5.
एक उत्तल लेंस से 5 सेमी की दूरी पर स्थित एक वस्तु का प्रतिबिम्ब वस्तु की ओर, वस्त से दो गुना बड़ा बनता है। यदि वस्तु को उसी लेंस से 15 सेमी की दूरी पर रखा
जाए, तो उसके प्रतिबिम्ब की स्थिति तथा आवर्धन ज्ञात कीजिए। (2014, 15)
हल:
क्योंकि प्रतिबिम्ब लेंस के उसी ओर बनता है; अत: यह सीधा होगा तथा इसका आवर्धन
धनात्मक होगा।
आवर्धन m = \(\frac {υ}{u}\) = +2 या υ = 2u
:: दिया है : लेंस से वस्तु की दूरी (u) = -5 सेमी,
अतः लेंस से प्रतिबिम्ब की दूरी (υ) = 2 x (-5) = -10 सेमी, फोकस दूरी (f) = ?
लेंस के सूत्र \(\frac {1}{υ}\) + \(\frac {1}{u}\) – \(\frac {1}{f}\)से.
\(\frac {1}{υ}\) = \(\frac {1}{-10}\) – \(\frac {1}{-5}\) = \(\frac {1}{10}\) + \(\frac {1}{5}\) – \(\frac {1}{10}\)
अतः f = + 10 सेमी
दूसरी स्थिति में, लेंस से वस्तु की दूरी (u) = -15 सेमी,
लेंस से प्रतिबिम्ब की दूरी (υ) = ?
लेंस के सूत्र \(\frac {1}{υ}\) + \(\frac {1}{u}\) – \(\frac {1}{f}\)से
\(\frac {1}{10}\) + \(\frac {1}{υ}\) – \(\frac {1}{-15}\)
\(\frac {1}{υ}\) = \(\frac {1}{10}\) – \(\frac {1}{5}\) = \(\frac {1}{30}\)
अतः υ = + 30 सेमी
अतः आवर्धन m = \(\frac {υ}{u}\) = \(\frac {30}{-15}\) = -2
अतः प्रतिबिम्ब लेंस के दूसरी ओर 30 सेमी की दूरी पर, उल्टा तथा दोगुना लम्बा बनेगा।