Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Text Book Questions and Answers.

BSEB Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5

Bihar Board Class 10 Maths दो चरों वाले रैखिक समीकरण युग्म Ex 3.5

प्रश्न 1.
निम्न रैखिक समीकरणों के युग्मों में से किसका एक अद्वितीय हल है, किसका कोई हल नहीं है या किसके अपरिमित रूप से अनेक हल हैं। अद्वितीय हल की स्थिति में, उसे वज्रगुणन विधि से ज्ञात कीजिए।
(i) x – 3y – 3 = 0
3x – 9y – 2 = 0
(ii) 2x + y = 5
3x + 2y = 8
(iii) 3x – 5y = 20
6x – 10y = 40
(iv) x – 3y – 7 = 0
3x – 3y – 15 = 0
हल
(i) दिए गए रैखिक समीकरणों का युग्म
x – 3y – 3 = 0 …….. (1)
3x – 9y – 2 = 0 ……. (2)
उपर्युक्त समीकरण युग्म की तुलना रैखिक समीकरण युग्म a1x + b1y + c1 = 0 तथा a2x + b2y + c2 = 0 से करने पर,
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Q1
अतः दिए गए समीकरणों के युग्म का कोई हल नहीं होगा।

(ii) दिए गए रैखिक समीकरणों का युग्म
2x + y = 5 ⇒ 2x + y – 5 = 0 ……(1)
3x + 2y = 8 ⇒ 3x + 2y – 8 = 0 …….. (2)
उपर्युक्त समीकरण युग्म की तुलना रैखिक समीकरण युग्म a1x + b1y + c1 = 0 तथा a2x + b2y + c2 = 0 से करने पर,
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Q1.1
अत: समीकरण युग्म का एक अद्वितीय हल होगा।
तब वज्रगुणन से,
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Q1.2
अत: समीकरणों के युग्म का हल x = 2 तथा y = 1

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5

(iii) दिए गए रैखिक समीकरणों का युग्म
3x – 5y = 20 ⇒ 3x – 5y – 20 = 0 …….. (1)
6x – 10 y = 40 ⇒ 6x – 10y – 40 = 0 ………. (2)
उपर्युक्त समीकरण युग्म की तुलना रैखिक समीकरण युग्म a1x + b1y + c1 = 0 तथा a2x + b2y + c2 = 0 से करने पर,
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Q1.3
अत: समीकरण युग्म के अपरिमित रूप से अनेक हल होंगे।

(iv) दिए गए रैखिक समीकरणों का युग्म
x – 3y – 7 = 0 …….(1)
3x – 3y – 15 = 0 …….(2)
उपर्युक्त समीकरण युग्म की तुलना रैखिक समीकरण युग्म a1x + b1y + c1 = 0 तथा a2x + b2y + c2 = 0 से करने पर,
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Q1.4
अतः समीकरणों के युग्म का एक अद्वितीय हल प्राप्त होगा।
तब वज्रगुणन से,
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Q1.5
अतः दिए गए समीकरणों के युग्म का हल x = 4 तथा y = -1

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5

प्रश्न 2.
(i) a और b के किन मानों के लिए, निम्न रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?
2x + 3y = 7
(a – b)x + (a + b)y = 3a + b – 2
(ii) k के किस मान के लिए, निम्न रैखिक समीकरणों के युग्म का कोई हल नहीं है?
3x + y = 1
(2k – 1)x + (k – 1)y = 2k + 1
हल
(i) दिए गए रैखिक समीकरणों का युग्म
2x + 3y = 7 ⇒ 2x + 3y – 7 = 0 …….(1)
(a – b)x + (a + b)y = 3a + b – 2
⇒ (a – b) x + (a + b)y – (3a + b – 2) = 0 ……..(2)
उपर्युक्त समीकरण युग्म की तुलना रैखिक समीकरण युग्म a1x + b1y + c1 = 0 तथा a2x + b2y + c2 = 0 से करने पर,
a1 = 2, b1 = 3, c1 = -7
a2 = (a – b), b2 = (a + b), c2 = -(3a + b – 2)
समीकरण युग्म के अपरिमित रूप से अनेक हल होंगे यदि \(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\)
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Q2
समीकरण (3) को 2 से गुणा करके समीकरण (4) में से घटाने पर,
(2a – 4b) – (2a – 18b) = 6 – (-8)
⇒ 2a – 4b – 2a + 18b = 6 + 8
⇒ 14b = 14
⇒ b = 1
तब, समीकरण (3) में b = 1 रखने पर,
a – 9 × 1 = -4
⇒ a = -4 + 9
⇒ a = 5
अत: a = 5 तथा b = 1

(ii) दिए गए रैखिक समीकरणों का युग्म
3x + y = 1 ⇒ 3x + y – 1 = 0 ……(1)
(2k – 1)x + (k – 1)y = 2k + 1
⇒ (2k – 1)x + (k – 1)y – (2k + 1) = 0 …….. (2)
उपर्युक्त समीकरण युग्म की तुलना रैखिक समीकरण युग्म a1x + b1y + c2 = 0 तथा a2x + b2y + c2 = 0 से करने पर,
a1 = 3, b1 = 1, c1 = -1
a2 = 2k – 1, b2 = k – 1, c2 = -(2k + 1)
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Q2.1

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5

प्रश्न 3.
निम्न रैखिक समीकरणों के युग्म को प्रतिस्थापन एवं वज्रगुणन विधियों से हल कीजिए। किस विधि को आप अधिक उपयुक्त मानते हैं?
8x + 5y = 9
3x + 2y = 4
हल
दिए गए रैखिक समीकरणों का युग्म
8x + 5y = 9 …….(1)
3x + 2y = 4 ……..(2)
प्रतिस्थापन विधि :
समीकरण (2) से,
3x + 2y = 4
⇒ 2y = 4 – 3x
⇒ y = \(\frac{4-3 x}{2}\)
y का यह मान समीकरण (1) में रखने पर,
8x + 5(\(\frac{4-3 x}{2}\)) = 9
⇒ 8x + \(\frac{20-15 x}{2}\) = 9
⇒ 16x + 20 – 15x = 18 (दोनों पक्षों के प्रत्येक पद को 2 से गुणा करने पर)
⇒ 16x – 15x = 18 – 20
⇒ x = -2
अब, समीकरण (1) में x = -2 रखने पर,
8(-2) + 5y = 9
⇒ -16 + 5y = 9
⇒ 5y = 9 + 16 = 25
⇒ 5y = 25
⇒ y = 5
अत: समीकरणों के युग्म का हल x = -2 तथा y = 5
वज्रगुणन विधि : दिए गए रैखिक समीकरणों का युग्म
8x + 5y – 9 = 0 ……… (1)
3x + 2y – 4 = 0 ……(2)
दिए गए समीकरण युग्म की तुलना रैखिक समीकरण युग्म a1x + b1y + c1 = 0 तथा a2x + b2y + c2 = 0 से करने पर,
a1 = 8, b1 = 5, c1 = -9
a2 = 3, b2 = 2, c2 = -4
तब वज्रगुणन से,
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Q3
Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 Q3.1
अत: समीकरणों के युग्म का हल : x = -2 तथा y = 5

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5

प्रश्न 4.
निम्न समस्याओं में रैखिक समीकरणों के युग्म बनाइए और उनके हल (यदि उनका अस्तित्व हो) किसी बीजगणितीय विधि से ज्ञात कीजिए-
(i) एक छात्रावास के मासिक व्यय का एक भाग नियत है तथा शेष इस पर निर्भर करता है कि छात्र ने कितने दिन भोजन लिया है। जब एक विद्यार्थी A को, जो 20 दिन भोजन करता है, ₹ 1000 छात्रावास के व्यय के लिए अदा करने पड़ते हैं, जबकि एक विद्यार्थी B को, जो 26 दिन भोजन करता है छात्रावास के व्यय के लिए ₹ 1180 अदा करने पड़ते हैं। नियत व्यय और प्रतिदिन के भोजन का मूल्य ज्ञात कीजिए।
(ii) एक भिन्न \(\frac{1}{3}\) हो जाती है, जब उसके अंश से 1 घटाया जाता है और वह \(\frac{1}{4}\) हो जाती है, जब हर में 8 जोड़ दिया जाता है। वह भिन्न ज्ञात कीजिए।
(iii) यश ने एक टेस्ट में 40 अंक अर्जित किए, जबकि उसे प्रत्येक सही उत्तर पर 3 अंक मिले तथा अशुद्ध उत्तर पर 1 अंक की कटौती की गई। यदि उसे सही उत्तर पर 4 अंक मिलते तथा अशुद्ध उत्तर पर 2 अंक कटते, तो यश 50 अंक अर्जित करता। टेस्ट में कितने प्रश्न थे?
(iv) एक राजमार्ग पर दो स्थान A और B, 100 किमी० की दूरी पर हैं। एक कार A से तथा दूसरी कार B से एक ही समय चलना प्रारम्भ करती है। यदि ये कारें भिन्न-भिन्न चालों से एक ही दिशा में चलती हैं तो वे 5 घंटे पश्चात् मिलती हैं। जब वे विपरीत दिशाओं में चलना प्रारम्भ करती हैं तो वे 1 घंटे पश्चात् मिलती हैं। दोनों कारों की चाल ज्ञात कीजिए।
(v) एक आयत का क्षेत्रफल 9 वर्ग इकाई कम हो जाता है, यदि उसकी लम्बाई 5 इकाई कम कर दी जाती है और चौड़ाई 3 इकाई बढ़ा दी जाती है। यदि हम लम्बाई को 3 इकाई और चौड़ाई को 2 इकाई बढ़ा दें, तो क्षेत्रफल 67 वर्ग इकाई बढ़ जाता है। आयत की विमाएँ ज्ञात कीजिए।
हल
(i) माना छात्रावास के भोजनकर्ता छात्र के लिए नियत व्यय ₹ x तथा प्रतिदिन के भोजन का मूल्य ₹ y है।
20 दिन के भोजन के लिए दिया भुगतान = नियत व्यय + 20 दिन के भोजन का मूल्य
= ₹ x + (20 × ₹ y)
= ₹(x + 20y)
परन्तु विद्यार्थी A को 20 दिन के लिए ₹ 1000 देना पड़ता है।
x + 20y = 1000 ……. (1)
इसी प्रकार,
26 दिन के भोजन के लिए दिया गया भुगतान = नियत व्यय + 26 दिन के भोजन का मूल्य
= ₹ x + (26 × ₹ y)
= (x + 26y)
परन्तु विद्यार्थी B को 26 दिन के लिए ₹ 1180 देना पड़ता है।
x + 26y = 1180 …… (2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
(x + 26y) – (x + 20y) = 1180 – 1000
⇒ 6y = 180
⇒ y = 30
तब, समीकरण (1) में y = 30 रखने पर,
x + 20(30) = 1000
⇒ x + 600 = 1000
⇒ x = 1000 – 600 = 400
अतः छात्रावास का नियत व्यय ₹ 400 तथा प्रतिदिन भोजन का व्यय ₹ 30 है।

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5

(ii) माना भिन्न का अंश x तथा हर y है।
तब भिन्न = \(\frac{x}{y}\)
जब भिन्न के अंश में से 1 घटाया जाता है तो वह \(\frac{x-1}{y}\) हो जाएंगी परन्तु प्रश्नानुसार वह \(\frac{1}{3}\) जाती है।
\(\frac{x-1}{y}=\frac{1}{3}\)
⇒ y = 3(x – 1)
इसी प्रकार, जब भिन्न के हर में 8 जोड़ा जाता है तो वह \(\frac{x}{y+8}\) हो जाएगी।
परन्तु प्रश्नानुसार वह \(\frac{1}{4}\) हो जाती है।
\(\frac{x}{y+8}=\frac{1}{4}\)
⇒ y + 8 = 4x
⇒ y = 4x – 8 ……(2)
समीकरण (1) व समीकरण (2) से,
4x – 8 = 3(x – 1)
⇒ 4x – 8 = 3x – 3
⇒ 4x – 3x = -3 + 8
⇒ x = 5
समीकरण (1) में x = 5 रखने पर,
y = 3(5 – 1) = 3 × 4 = 12
अतः भिन्न = \(\frac{5}{12}\)

(iii) माना यश ने टेस्ट पेपर में दिए प्रश्नों में से x प्रश्न सही हल किए तथा y प्रश्न अशुद्ध हल किए।
प्रश्नों की कुल संख्या = (x + y)
सही उत्तरों पर प्राप्त कुल अंक = 3x
और अशुद्ध उत्तरों पर काटे गए कुल अंक = 1y
परिणामी प्राप्तांक = 3x – y परन्तु दिया है कि उसने केवल 40 अंक पाए।
3x – y = 40 …….. (1)
यदि सही उत्तर पर 4 अंक मिलते तो प्राप्त अंक 4x और अशुद्ध उत्तरों पर 2 अंक काटे जाते तो काटे जाने वाले अंक = 2y
परिणामी अंक = 4x – 2y = 2(2x – y)
परन्तु दिया है कि परिणामी प्राप्तांक 50 होते।
2(2x – y) = 50
⇒ 2x – y = 25 ……… (1)
समीकरण (1) में से समीकरण (2) को घटाने पर,
(3x – y) – (2x – y) = 40 – 25
⇒ x = 15
समीकरण (2) में x का मान रखने पर,
2x – y = 25
⇒ y = 2x – 25
⇒ y = (2 × 15) – 25 = 30 – 25
⇒ y = 5
अतः यश ने 15 प्रश्न सही तथा 5 प्रश्न अशुद्ध हल किए।कुल मिलाकर 20 प्रश्न हल किए।

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5

(iv) माना स्थान A से चलने वाली कार की चाल x किमी प्रति घण्टा और स्थान B से चलने वाली कार की चाल y किमी प्रति घण्टा है।
स्थान A तथा स्थान B के बीच की दूरी = 100 किमी
जब कारें एक ही दिशा में A तथा B से चलती हैं तो 5 घंटे बाद मिलती हैं अर्थात्
5 घंटे में स्थान A से चलने वाली कार द्वारा चली गई दूरी स्थान B से चलने वाली कार द्वारा चली गई दूरी की अपेक्षा 100 किमी अधिक होगी।
5 घंटे में स्थान A से चली गई दूरी – 5 घंटे में स्थान B से चली गई दूरी = 100 किमी
5x – 5y = 100
⇒ x – y = 20 ……(1)
जब कारें विपरीत दिशाओं में स्थान A तथा B से चलकर मिलेंगी तो उन्हें 1 घंटे में स्थानों के बीच की दूरी के बराबर अर्थात् 100 किमी चलना होगा। तब, स्थान A से चली कार द्वारा 1 घंटे में चली दूरी + स्थान B से चली कार द्वारा
1 घंटे में चली दूरी = 100 किमी
x किमी + y किमी = 100 किमी
x + y = 100 ……. (2)
समीकरण (1) व समीकरण (2) को जोड़ने पर,
2x = 120 ⇒ x = 60
समीकरण (2) व समीकरण (1) को घटाने पर,
2y = 80 ⇒ y = 40
अत: कारों की चाल क्रमश: 60 किमी प्रति घण्टा व 40 किमी प्रति घण्टा

Bihar Board Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5

(v) माना कि आयत की लम्बाई x मात्रक तथा चौड़ाई y मात्रक है।
आयत का क्षेत्रफल = लम्बाई x चौड़ाई = x × y = x y मात्रक
लम्बाई को 5 मात्रक घटाने पर यह (x – 5) मात्रक रह जाएगी
और चौड़ाई को 3 मात्रक बढ़ाने पर यह (y + 3) मात्रक हो जाएगी।
तब, नए आयत का क्षेत्रफल = (x – 5) × (y + 3) = (xy + 3x – 5y – 15)
मात्रक मूल आयत का क्षेत्रफल = xy मात्रक
नए आयत के क्षेत्रफल में कमी = xy – (xy + 3x – 5y – 15) = -3x + 5y + 15 मात्रक
तब प्रश्नानुसार, -3x + 5y + 15 = 9
⇒ -3x + 5y = 9 – 15 = -6
⇒ 3x – 5y = 6 ……(1)
पुनः लम्बाई को 3 मात्रक बढ़ाने पर यह (x + 3) मात्रक हो जाएगी।
और चौड़ाई को 2 मात्रक बढ़ाने पर यह (y + 2) मात्रक हो जाएगी।
तब, नए आयत का क्षेत्रफल = (x + 3) (y + 2) = (xy + 2x + 3y + 6) मात्रक
और मूल आयत का क्षेत्रफल = xy मात्रक
आयत का बढ़ा हुआ क्षेत्रफल = (xy + 2x + 3y + 6) – xy मात्रक = 2x + 3y + 6 मात्रक
परन्तु प्रश्नानुसार क्षेत्रफल 67 वर्ग मात्रक बढ़ जाता है।
2x + 3y + 6 = 67
⇒ 2x + 3y = 61 …… (2)
समीकरण (1) को 2 से गुणा करने पर,
6x – 10y = 12 ….(3)
समीकरण (2) को 3 से गुणा करने पर,
6x + 9y = 183 ……. (4)
समीकरण (4) में से समीकरण (3) को घटाने पर,
(6x + 9y) – (6x – 10y) = 183 – 12
⇒ 19y = 171
⇒ y = 9
समीकरण (2) में y का मान रखने पर,
2x + 3(9) = 61
⇒ 2x + 27 = 61
⇒ 2x = 61 – 27 = 34
⇒ x = 17
अत: आयत की लम्बाई = 17 मात्रक तथा चौड़ाई = 9 मात्रक।

Leave a Comment